
Insper

Programa de Mestrado Profissional em Economia

Alexandre Fernandes Theoharidis

Forecasting Inflation Using Deep Learning: An
Application of Convolutional LSTM Networks

and Variational Autoencoders

São Paulo

2021

Alexandre Fernandes Theoharidis

Forecasting Inflation Using Deep Learning: An

Application of Convolutional LSTM Networks and

Variational Autoencoders

Dissertação apresentada ao Programa de
Mestrado Profissional em Economia do Insper
como parte dos requisitos para obtenção do
título de Mestre em Economia.

Área de concentração: Economia dos
Negócios

Linha de pesquisa: Macroeconomia

Insper
Programa de Mestrado Profissional em Economia

Supervisor: Diogo Abry Guillén
Co-supervisor: Hedibert Freitas Lopes

São Paulo
2021

Theoharidis, Alexandre Fernandes.
Forecasting Inflation Using Deep Learning: An Application of Convolu-

tional LSTM Networks and Variational Autoencoders. / Alexandre Fernandes
Theoharidis. – São Paulo, 2021.

153f.

Dissertação (Mestrado) – Insper
Programa de Mestrado Profissional em Economia, 2021.
Orientador: Diogo Abry Guillén
Coorientador: Hedibert Freitas Lopes

1. Deep Learning. 2. Machine Learning. 3. Inflation Forecasting. 4. LSTM
Networks. 5. Convolutional Networks. 6. Autoencoders. I. Diogo Abry Guillén.
II. Hedibert Freitas Lopes. III. Insper. IV. Departamento de Economia. V.
Forecasting Inflation Using Deep Learning: An Application of Convolutional
LSTM Networks and Variational Autoencoders.

Alexandre Fernandes Theoharidis

Forecasting Inflation Using Deep Learning: An
Application of Convolutional LSTM Networks and

Variational Autoencoders

Dissertação apresentada ao Programa de
Mestrado Profissional em Economia do Insper
como parte dos requisitos para obtenção do
título de Mestre em Economia.

Área de concentração: Economia dos
Negócios

Linha de pesquisa: Macroeconomia

DATA DE APROVAÇÃO: São Paulo, 08 de fevereiro de 2021.

BANCA EXAMINADORA

Diogo Abry Guillén
Orientador

Hedibert Freitas Lopes
Coorientador

Miguel Maria Charters de Oliveira
Bandeira da Silva
Convidado Interno

Flavio Almeida de Magalhães
Cipparrone

Convidado Externo

À minha família e amigos.

AGRADECIMENTOS

Primeiramente, agradeço ao meu orientador, professor Diogo Abry Guillén, e ao meu
coorientador, professor Hedibert Freitas Lopes, por me acompanharem e me instruírem ao
decorrer da elaboração dessa dissertação. Foi uma honra. Nossas interações foram funda-
mentais para o sucesso desse trabalho, e as sugestões e conselhos recebidos contribuíram
substancialmente para a sua qualidade. Ademais, ambos me estimularam a seguir em
frente sempre que preciso e a atingir objetivos arrojados e desafiadores. São professores
brilhantes e exemplares. Seus ensinamentos foram incomensuráveis.

Concomitantemente, quero agradecer aos amigos que formei ao decorrer do mestrado
e que carregarei comigo para o restante da minha vida. Foram um verdadeiro presente.
Nossa convivência ao longo dessa jornada foi gratificante e prazerosa. Sem dúvida alguma,
tornou o mestrado não apenas mais leve, mas também enriqueceu minha experiência e
aprendizagem. Nossos debates, estudos e trabalhos engrandeceram o curso e me motivaram
continuamente. Essa dissertação também tem a contribuição de todos vocês.

Em particular, preciso agradecer à Nelly Colnaghi, uma amiga incrível e muito
especial. Sua parceria nos projetos e estudos foi espetacular, sempre me estimulando, me
ensinando, me animando e me ajudando, mesmo nos momentos mais difíceis, e não foram
poucos. Ainda em especial, deixo aqui meu agradecimento a Gabriel, Débora e Milena,
três grandes amigos que estiveram ao meu lado sempre que necessitei e com os quais
estudos, discussões e projetos agregaram enormemente para mim. Nossos momentos de
descontração, convivência e apoio foram sensacionais. Não menos importantes, preciso
citar nominalmente também Rafael Couto, Ivy, Eduardo, Fernando Casagrande e Lucas
Avelleda. Foi um prazer cursar esse mestrado com todos vocês. Obrigado por tudo. Vocês
poderão contar comigo sempre.

Ademais, gostaria de agradecer ao Insper, que apresentou um corpo docente de
excelência com o qual tive a oportunidade de estudar ao longo dessa trajetória. São
profissionais comprometidos, diligentes e dedicados, que transmitiram conhecimentos
valiosos. Também destaco a qualidade da infraestrutura da universidade, que ofereceu
todos os recursos necessários para prover uma educação de alto nível, mesmo durante a
pandemia do Covid-19, e o suporte da coordenadoria, que esteve sempre presente.

Finalmente, agradeço à minha família pela educação, instrução e valores que me
proporcionam ao longo da minha vida. Foram decisivos para conquistar tudo o que tenho
hoje.

EPIGRAPH

“The mystery of human existence lies not in just staying alive,
but in finding something to live for.”

Fyodor Dostoevsky (1821–1881)

ABSTRACT

This works presents a novel model based on deep learning for inflation forecasting, which is
a daunting and unsolved problem in modern Macroeconomics. The challenges emerge due to
the nonlinear and nonstationary behavior displayed by inflation in practice, diverging from
the dynamics expected from the New Keynesian Phillips Curve. Consequently, conventional
econometric models fail to deliver consistent and reliable forecasts, since they are not
well-equipped to capture these complexities. In this context, deep learning presents itself
as a promising approach, given its success when dealing with big data and nonlinearities.
Illustrative examples abound in the fields of speech recognition, text interpretation, image
processing, and financial time series modeling, among others. Astonishingly, despite
its vast potential, no applications are available in the literature to investigate whether
improvements in inflation forecasting can be obtained through deep learning. Thereby,
as a contribution to the literature, this study proposes a hybrid deep learning model
that merges Variational Autoencoders and Convolutional LSTM Networks to enhance
the accuracy of inflation forecasts. The model estimation procedure employs state-of-
the-art techniques to reduce overfitting, such as the addition of dropout and batch
normalization layers in the model architecture. Through a public macroeconomic database
that comprises 134 monthly US time series, the proposed model is compared against several
popular econometric and machine learning benchmarks, including Ridge regression, LASSO
regression, Random Forests, Bayesian methods, VECM, and multilayer perceptron. Using
observations collected in the period ranging from January 1978 to December 2019, the
empirical analysis corroborates the superiority of the model in terms of consistency and out-
of-sample performance. The robustness of these findings is confirmed via cross-validation
and simulations using different training, validation, and test samples.

Keywords: Deep Learning. Machine Learning. Inflation Forecasting. LSTM Networks.
Convolutional Networks. Autoencoders.

RESUMO

Esse trabalho apresenta um modelo inovador baseado em deep learning para previsão
de inflação, um problema desafiador e, até o momento, sem solução na Macroeconomia
moderna. Os desafios emergem devido ao comportamento não linear e não estacionário
exibido pela inflação na prática, divergindo da dinâmica esperada a partir da Curva
de Phillips Neokeynesiana. Consequentemente, modelos econométricos convencionais se
mostram incapazes de produzir previsões críveis e consistentes, pois não possuem a
flexibilidade necessária para capturar essas complexidades. Nesse contexto, deep learning
se apresenta como uma abordagem promissora, dado o seu sucesso no tratamento de
dados não lineares e abundantes (big data). Exemplos ilustrativos são encontratos nos
campos de reconhecimento de fala, interpretação textual, processamento de imagens e
modelagem de séries temporais financeiras, entre outros. Surpreendentemente, apesar de
seu potencial, não há aplicações de deep learning ao problema descrito para investigar
se há a possibilidade de aprimorar previsões de inflação através dessa técnica. Portanto,
como contribuição à literatura, esse estudo propõe um modelo de deep learning híbrido
que combina Autoencoders Variacionais com Redes LSTM Convolucionais para ampliar
a acurácia das previsões de inflação. O procedimento de estimação do modelo emprega
técnicas do estado-da-arte para reduzir a probabilidade de overfitting, tais como a adição de
camadas de dropout e batch normalization à arquitetura do modelo. Através de um banco de
dados macroeconômicos públicos composto por 134 séries temporais mensais da economia
estadunidense, o modelo proposto é comparado contra populares benchmarks econométricos
e de machine learning, incluindo a regressão Ridge, a regressão LASSO, Random Forests,
métodos Bayesianos, VECM, e o perceptron de múltiplas camadas. Usando observações
coletadas no período que se estende de janeiro de 1978 até dezembro de 2019, a análise
empírica corrobora a superioridade do modelo em termos de consistência e desempenho
fora da amostra. A robustez das conclusões é confirmada mediante cross-validation e
simulações usando diferentes amostras de treino, validação e teste.

Palavras-chave: Deep Learning. Machine Learning. Previsão de Inflação. Redes LSTM.
Redes Convolucionais. Autoencoders.

EXECUTIVE SUMMARY

The study of inflation and mathematical models to explain its dynamics and generate
forecasts is a recurring topic in modern Macroeconomics and Econometrics. Its relevance
stems from the role played by inflation in many practical contexts. For instance, when
implementing the monetary policy, central banks rely on inflation forecasts, among other
inputs, to determine the optimal interest rate. Besides, firms and households savings and
consumption are influenced by expected inflation. Furthermore, inflation is also crucial for
financial institutions when calibrating credit spreads.

Despite the importance of inflation forecasting in realistic contexts, there is no
consensus regarding which is the best econometric approach to conceive reliable and useful
predictions. The challenges emerge from the complex empirical properties of observed
inflation time series, marked by nonstationarity and nonlinearities. Standard econometric
models usually do not have enough flexibility to reproduce these properties, since they are
built on many simplifying assumptions incompatible with empirical evidence.

As illustration, it is worth mentioning the New Keynesian Phillips Curve (NKPC).
Although supported by solid theoretical foundations and commonly employed in practice
to investigate the behavior of inflation, the original NKPC usually displays lackluster
performance in practice due to its linearity and constant coefficients. Many studies examined
in this dissertation confirm the inaccurate forecasts produced by the NKPC and provide
multiple explanations for the nonlinearities in inflation time series, such as downward
nominal wage rigidities due to the labor rights faced when companies attempt to implement
wage cuts.

Thereby, the main objective of this works is to investigate whether deep learning
methods can increase the out-of-sample accuracy of inflation forecasts with respect to the
conventional models typically encountered in the literature. The selection of deep learning,
which is inserted into the set of machine learning algorithms, to overcome the limitation
of previous approaches is justified by the promising results reported by researchers and
practitioners in many contexts. Indeed, many authors have successfully applied deep
learning not only for time series modeling, but also for complex tasks, such as pattern
classification, speech recognition, and image processing. In these problems, data is typically
nonlinear and nonstationary, similarly to inflation.

Surprisingly, until now, in spite of the potential of deep learning, applications to
inflation modeling are somewhat scarce. The literature review unveils that Medeiros et
al. (2019) were among the first to survey and carefully examine several machine learning
models, evaluating their performance in forecasting inflation. Previous authors have focused
exclusively on assessing individual models against straightforward benchmarks. Briefly,
the results provided by Medeiros et al. (2019) demonstrate that machine learning models
are able to consistently beat univariate econometric models, such as random walk and

autoregressive ones, with gains as large as 30% in terms of mean squared errors. The
superiority of machine learning is verified in multiple subsamples of the data collected and
is robust in real-time experiments. These conclusions encourage this dissertation, given
that deep learning is a subset of machine learning.

Hence, this works presents a novel model based on deep learning for inflation
forecasting. More specifically, it is proposed a model merging Variational Autoencoders
(VAE) and Convolutional LSTM (ConvLSTM) networks, two architectures that have been
successfully applied to time series modeling. In that sense, the VAE acts as a dimension
reduction tool, analogously to a nonlinear PCA, while the ConvLSTM forecasts inflation
using the transformed inputs. The model estimation employs state-of-the-art techniques to
prevent overfitting, including dropout and batch normalization layers in the architecture.

The performance of the model is compared against a wide set of benchmarks,
which include popular econometric and machine learning models commonly found in
the literature, including Ridge regression, LASSO regression, Random Forests, Bayesian
methods, VECM, and multilayer perceptron. With this aim, the model and its benchmarks
are adjusted through a public macroeconomic database comprising 134 monthly US time
series. The period analyzed ranges from January 1978 to December 2019, covering several
economic cycles and, thus, providing a fertile series of observations to test and compare
the out-of-sample performance of the proposed model.

Briefly, the empirical results corroborate the superiority of the ConvLSTM coupled
with VAE. This combination of networks provides the lowest median MSE across simulations
and consistently outperforms its benchmarks. The robustness of these findings is confirmed
via cross-validation and simulations using different training, validation, and test samples.
The same conclusion is also obtained using distinct performance metrics, such as MAE,
and is sustained in multiple forecasting horizons.

Additionally, these finds suggest that similar accomplishments may be attained
using deep learning for modeling and forecasting other macroeconomic variables. Indeed,
the factors that induce nonlinearities in inflation also influence other macroeconomic
time series. Therefore, further studies may be carried out to inspect the application of
deep learning models in these situations, comparing against alternatives available in the
pertaining literature.

Finally, it should be emphasized that nonlinearities seem to be pervasive in the
macroeconomic dataset contemplated in this works. This conclusion emerges from the
fact that the VAE network managed to improve the performance of the ConvLSTM
model, while linear factor models displayed mediocre out-of-sample accuracy. Jointly, these
findings suggest that a nonlinear factor structure explain the variations of these macroe-
conomic variables, in agreement with similar studies using related datasets. Naturally,
a thorough examination of this aspect would be pertinent for future projects, providing
major contributions to the literature.

LIST OF FIGURES

Figure 1 – Illustration of how machine learning, representation learning, and deep
learning concepts are intertwined. 47

Figure 2 – Illustration of regression trees. The bottom right panel brings the per-
spective plot of the prediction surface associated with the tree appearing
in the bottom left. Source: Hastie, Tibshirani and Friedman (2008). . . 48

Figure 3 – Generic neuron and its components. 55

Figure 4 – Network graph for a (p+ 1)-layer deep perceptron. 58

Figure 5 – Representation of an autoencoder with a single hidden layer. The blue
circles denote the nodes where the encoding process occurs. The red
nodes decompress the encoded data, generating outputs approximating
the inputs inserted in the green nodes. 60

Figure 6 – Prototypes of (a) a conventional autoencoder and (b) a denoising au-
toencoder. Source: Dong et al. (2018). 62

Figure 7 – Example of convolution between two matrices, as frequently carried out
by machine learning models. 63

Figure 8 – Illustration of a convolutional layer. 63

Figure 9 – General representation of a convolutional neural network. The yellow
rectangle represents the kernel. 65

Figure 10 – Stacked CNNs and representation of the pooling function. 65

Figure 11 – Example of a RNN with no output. The RNN simply receives the input
xt and incorporates into the state ht that is passed forward through
time. On the right, the same network seen as an unfolded computational
graph (GOODFELLOW; BENGIO; COURVILLE, 2016). 66

Figure 12 – Basic structure of a LSTM network with a forget gate. Inspired by
Fischer and Krauss (2018). 68

Figure 13 – Flowchart exhibiting the proposed forecasting process. 74

Figure 14 – Representation of a variational autoencoder. In the sampling stage, µ
and σ denoted the mean and standard deviation estimated from the
encoded data, respectively. 76

Figure 15 – Flowchart representing the implementation of the variational autoen-
coder using the library Keras in Python. Even though this character-
ization is far more complex than the one outlined in Figure 14, the
encoding, decoding, and sampling elements are still present. The addi-
tional layers are simply intermediate functions required by Keras for
implementation. 79

Figure 16 – Flowchart representing the layers of the ConvLSTM model designed in
this study. The input layer receives the encoded data supplied by the
variational autoencoder (a 57×3×4×478 tensor) and transfers the data
to a sequence of convolutional LSTM, dropout (with a dropout rate
of 0.2), and batch normalization layers. The convolutional layers have
16 filters and a 3×3 kernel (filter size). Next, a 3D max pooling layer
(2×2×2) summarizes the data, which is then flattened and inserted
in a LSTM network formed by two layers. with 100 units each, whose
output is processed by a fully connected deep multilayer perceptron
(constituted by 3 layers, with 64, 32 and 1 units each, respectively).
Finally, the deep MLP generates inflation forecasts. 80

Figure 17 – Flowchart representing the implementation of the advocated ConvLSTM
model using the library Keras in Python. The steps are consistent with
those depicted in Figure 16. Dropout is embedded in the ConvLSTM
layers. 81

Figure 18 – Illustration of the possible impacts of dropout in a standard neural
network model. In the left, there is a fully connected MLP with two
hidden layers. In the right, after the dropout procedure, units have been
dropped and the network loses several connections. Source: Srivastava
et al. (2014). 84

Figure 19 – Simplified view of the splitting process of the dataset used to train and
test the model. 94

Figure 20 – Illustration of the behavior of the MSE of the ConvLSTM model pro-
posed in this work for inflation forecasting. The batch size is equal to
32. The test MSE begins decreasing until it reaches a minimum around
35-40 epochs. After that point, it increases, despite the fact that the
training MSE keeps declining. Consequently, there are no gains in terms
of generalization in training the model afterwards. 99

Figure 21 – Conceptual sketch of flat and sharp minima. The loss function is denoted
by f(x). Observe that using the estimated sharp minimum of the training
function leads to a substantially higher value of f using the test set. In
contrast, the difference between the training and test values are much
more modest for a flat minimum. Source: Keskar et al. (2017). 100

Figure 22 – Evolution of the MSE of the ConvLSTM trained in Figure 20, but now
trained with a batch size of 256. The MSE curve is naturally smoother,
since the estimates of the gradient are more precise. However, due to
the deteriorated generalization power, even after 70 epochs, the out-of-
sample MSE is still above the minimum reached when the network was
trained with a batch size of 32. The same happens with the in-sample
values. 101

Figure 23 – Normalized first difference of the log prices, as measured by the US CPI
(CPIAUCSL series in the FRED database). 103

Figure 24 – Standard deviation of the first difference of the log prices, as measured
by the US CPI (CPIAUCSL series in the FRED database). Computed
using a 12-month rolling window. 104

Figure 25 – Q-Q plot of the normalized first difference of the log prices, as measured
by the US CPI (CPIAUCSL series in the FRED database). 105

Figure 26 – Autocorrelation function of the first difference of the log prices, as
measured by the US CPI. Confidence interval (shaded area) is computed
using Bartlett’s formula with a significance level of 5%. 105

Figure 27 – Partial autocorrelation function of the first difference of the log prices, as
measured by the US CPI. Confidence interval (shaded area) is computed
using Bartlett’s formula with a significance level of 5%. 106

Figure 28 – Autocorrelation function of the log inflation series after twice-differencing.
Confidence interval (shaded area) is computed using Bartlett’s formula
with a significance level of 5%. 106

Figure 29 – Partial autocorrelation function of the log inflation series after twice-
differencing. Confidence interval (shaded area) is computed using Bartlett’s
formula with a significance level of 5%. 107

Figure 30 – Histogram (upper panel, normalized) and boxplot (bottom panel) of the
MSE of the ConvLSTM model proposed. The kernel density estimation
was carried out using a Gaussian kernel. 109

Figure 31 – Histogram (upper panel, normalized) and boxplot (bottom panel) of the
MSE of the ConvLSTM model proposed. The kernel density estimation
was carried out using a Gaussian kernel. 110

Figure 32 – MSE of the ConvLSTM model computed using a 12-month rolling window.121
Figure 33 – Volatility of the normalized second differences of log prices, as measured

by the CPI, using a 12-month rolling window. 122

LIST OF TABLES

Table 1 – Empirical papers on applications of deep learning techniques for time
series forecasting. 73

Table 2 – Programming languages, libraries, and main functions used in the imple-
mentation of the models discussed in the present dissertation. 97

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all
forecasting horizons (1, 2, 3, 6, and 12 months ahead) as well as for the
cumulative forecasts over 3, 6, and 12 months. Throughout this section,
the notation used to designate each model works as follows: “MLP” refers
to the multi-layer perceptron; “RW” is the random walk; “Ridge CV”,
“LASSO CV”, and “Enet CV” are the Ridge, LASSO, and Elastic Net
regressions with parameters chosen via cross-validation; “BRidge” is the
Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA” is the
moving average model suggested by Atkeson and Ohanian (2001). 110

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all
forecasting horizons (1, 2, 3, 6, and 12 months ahead) as well as for the
cumulative forecasts over 3, 6, and 12 months. Throughout this section,
the notation used to designate each model works as follows: “MLP” refers
to the multi-layer perceptron; “RW” is the random walk; “Ridge CV”,
“LASSO CV”, and “Enet CV” are the Ridge, LASSO, and Elastic Net
regressions with parameters chosen via cross-validation; “BRidge” is the
Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA” is the
moving average model suggested by Atkeson and Ohanian (2001). 111

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all
forecasting horizons (1, 2, 3, 6, and 12 months ahead) as well as for the
cumulative forecasts over 3, 6, and 12 months. Throughout this section,
the notation used to designate each model works as follows: “MLP” refers
to the multi-layer perceptron; “RW” is the random walk; “Ridge CV”,
“LASSO CV”, and “Enet CV” are the Ridge, LASSO, and Elastic Net
regressions with parameters chosen via cross-validation; “BRidge” is the
Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA” is the
moving average model suggested by Atkeson and Ohanian (2001). 112

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all
forecasting horizons (1, 2, 3, 6, and 12 months ahead) as well as for the
cumulative forecasts over 3, 6, and 12 months. Throughout this section,
the notation used to designate each model works as follows: “MLP” refers
to the multi-layer perceptron; “RW” is the random walk; “Ridge CV”,
“LASSO CV”, and “Enet CV” are the Ridge, LASSO, and Elastic Net
regressions with parameters chosen via cross-validation; “BRidge” is the
Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA” is the
moving average model suggested by Atkeson and Ohanian (2001). 113

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all
forecasting horizons (1, 2, 3, 6, and 12 months ahead) as well as for the
cumulative forecasts over 3, 6, and 12 months. Throughout this section,
the notation used to designate each model works as follows: “MLP” refers
to the multi-layer perceptron; “RW” is the random walk; “Ridge CV”,
“LASSO CV”, and “Enet CV” are the Ridge, LASSO, and Elastic Net
regressions with parameters chosen via cross-validation; “BRidge” is the
Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA” is the
moving average model suggested by Atkeson and Ohanian (2001). 114

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all
forecasting horizons (1, 2, 3, 6, and 12 months ahead) as well as for the
cumulative forecasts over 3, 6, and 12 months. Throughout this section,
the notation used to designate each model works as follows: “MLP” refers
to the multi-layer perceptron; “RW” is the random walk; “Ridge CV”,
“LASSO CV”, and “Enet CV” are the Ridge, LASSO, and Elastic Net
regressions with parameters chosen via cross-validation; “BRidge” is the
Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA” is the
moving average model suggested by Atkeson and Ohanian (2001). 115

Table 4 – Ranks produced by comparing the models according to their average
MSE through the simulations. The two best models are highlight in bold
font. 115

Table 4 – Ranks produced by comparing the models according to their average
MSE through the simulations. The two best models are highlight in bold
font. 116

Table 5 – Confidence intervals for the MSE. For each model, the first line contains
the average MSE and the second one, the limits of the interval. Some
forecasting periods were omitted for the sake of simplicity. The results
for these additional periods are similar to those reported in the table. . 116

Table 5 – Confidence intervals for the MSE. For each model, the first line contains
the average MSE and the second one, the limits of the interval. Some
forecasting periods were omitted for the sake of simplicity. The results
for these additional periods are similar to those reported in the table. . 117

Table 6 – Average MSE reduction delivered by each model with respect to random
walk. Negative values mean that the model increased the MSE. The
winning model is highlighted in bold font. 117

Table 6 – Average MSE reduction delivered by each model with respect to random
walk. Negative values mean that the model increased the MSE. The
winning model is highlighted in bold font. 118

Table 7 – Descriptive statistics of the out-of-sample MAE of each model. 122
Table 7 – Descriptive statistics of the out-of-sample MAE of each model. 123
Table 7 – Descriptive statistics of the out-of-sample MAE of each model. 124
Table 7 – Descriptive statistics of the out-of-sample MAE of each model. 125
Table 7 – Descriptive statistics of the out-of-sample MAE of each model. 126
Table 8 – Ranks produced by comparing the models according to their average

MAE through the simulations. The two best models are highlight in bold
font. 126

Table 8 – Ranks produced by comparing the models according to their average
MAE through the simulations. The two best models are highlight in bold
font. 127

Table 9 – Confidence intervals for the MAE. For each model, the first line contains
the average MAE and the second one, the limits of the interval. Some
forecasting periods were omitted for the sake of simplicity. The results
for these additional periods are similar to those reported in the table. . 127

Table 9 – Confidence intervals for the MAE. For each model, the first line contains
the average MAE and the second one, the limits of the interval. Some
forecasting periods were omitted for the sake of simplicity. The results
for these additional periods are similar to those reported in the table. . 128

Table 10 – Average MAE reduction delivered by each model with respect to random
walk. Negative values mean that the model increased the MSE. The
winning model is highlighted in bold font. 128

Table 10 – Average MAE reduction delivered by each model with respect to random
walk. Negative values mean that the model increased the MSE. The
winning model is highlighted in bold font. 129

Table 11 – Macroeconomic time series used to fit the model developed for inflation
forecasting and its benchmarks. “Transf.” refers to the transformation ap-
plied to the data according to the recommendations given by McCracken
and Ng (2016), which are compiled in Table 13. 149

Table 11 – Macroeconomic time series used to fit the model developed for inflation
forecasting and its benchmarks. “Transf.” refers to the transformation ap-
plied to the data according to the recommendations given by McCracken
and Ng (2016), which are compiled in Table 13. 150

Table 11 – Macroeconomic time series used to fit the model developed for inflation
forecasting and its benchmarks. “Transf.” refers to the transformation ap-
plied to the data according to the recommendations given by McCracken
and Ng (2016), which are compiled in Table 13. 151

Table 11 – Macroeconomic time series used to fit the model developed for inflation
forecasting and its benchmarks. “Transf.” refers to the transformation ap-
plied to the data according to the recommendations given by McCracken
and Ng (2016), which are compiled in Table 13. 152

Table 11 – Macroeconomic time series used to fit the model developed for inflation
forecasting and its benchmarks. “Transf.” refers to the transformation ap-
plied to the data according to the recommendations given by McCracken
and Ng (2016), which are compiled in Table 13. 153

Table 12 – Description of the groups cited in Table 11. 153
Table 13 – Description of the transformations cited in Table 11 applied to each

series xt. The differencing operator is denoted by ∆. 153

CONTENTS

1 INTRODUCTION . 27

2 LITERATURE REVIEW . 33
2.1 Inflation Forecasting . 33
2.1.1 New Keynesian Phillips Curve (NKPC) 33

2.1.2 Sources of Nonlinearities in Inflation Dynamics 35

2.2 Conventional Econometric Models . 37
2.2.1 ARFIMA . 37

2.2.2 GARCH . 38

2.2.3 VAR and Cointegration . 38

2.2.4 Regime-Switching Models . 40

2.2.4.1 Markov Chain Models . 40

2.2.4.2 Threshold Autoregressive Models . 40

2.2.5 Factor Models . 41

2.3 Shrinkage Methods . 42
2.3.1 LASSO Regression . 42

2.3.2 Ridge Regression . 44

2.3.3 Elastic Net . 45

2.4 Ensemble Models . 45
2.4.1 Gradient Boosting and AdaBoost . 45

2.4.2 Bagging . 46

2.5 Machine Learning Models . 47
2.5.1 Random Forests . 47

2.5.2 Bayesian Regression Trees . 50

2.5.3 K-Nearest Neighbors . 51

2.5.4 Support Vector Regression . 51

2.6 Deep Learning . 53
2.6.1 Artificial Neural Networks . 54

2.6.2 Deep Multilayer Perceptron . 57

2.6.3 Deep Autoencoder . 59

2.6.4 Convolutional Neural Networks . 62

2.6.5 Recurring Neural Networks . 65

2.6.6 Long Short-Term Memory (LSTM) Networks 67

2.7 Machine Learning and Inflation Forecasting 70

3 A DEEP LEARNING MODEL FOR INFLATION FORECASTING . 73
3.1 Theoretical Background . 73

3.1.1 Variational Autoencoders . 74
3.1.2 Convolutional LSTM Networks . 77
3.2 Computational Implementation . 78

4 DATA AND METHODOLOGY . 89
4.1 Benchmarks for Performance Appraisal 89
4.2 Data . 93
4.3 Training, Validation, and Test Sets . 94
4.4 Programming Languages . 96
4.5 Training and Optimization of Neural Networks 96

5 RESULTS . 103
5.1 Stylized Facts in Inflation Time Series 103
5.2 Performance Metrics . 104
5.3 Confidence Intervals and Hypothesis Testing 108
5.4 Empirical Analysis and Discussion 109

6 CONCLUSIONS . 131

BIBLIOGRAPHY . 137

APPENDIX A – FULL DESCRIPTION OF THE DATASET 149

27

1 INTRODUCTION

In modern macroeconomics, the relevance of inflation forecasting cannot be overstated,
given its prominent role in many practical situations. For instance, the estimation of DSGE
models, which are pervasively employed by central banks in their decisions regarding
monetary policy, requires a thorough understanding of inflation dynamics, without which
it becomes unfeasible to derive links between this and other macroeconomic variables and,
thus, make accurate predictions. Additionally, inflation forecasts are crucial for many firms
when assessing the profitability of long-term investments. Finally, banks and households
also rely on such analysis when celebrating contracts set in nominal values, such as debts.

As the pertaining literature shows, forecasting inflation is challenging and no consen-
sus exists regarding which econometric approach is superior; see Faust and Wright (2013)
and Rudd and Whelan (2007) for a comprehensive discussion. Undoubtedly, improving
upon simple univariate econometric models is daunting due to several factors. The main
hindrance lies on the nonlinear dynamics displayed by inflation in practice, undermining
the use of the standard linear Phillips Curve, despite its theoretical appeal. Evidence is
reported by Kumar and Orrenius (2016) and Zhang (2017), among others. This behavior
explains the challenges, since significant improvements in forecasting can only be attained
by capturing this dynamics via an appropriate econometric model designed to replicate
such unconventional interactions between variables, which is far from trivial.

With respect to the nonlinearities, many sources have been identified in the literature.
As shown by Daly and Hobijn (2014), given that firms virtually cannot reduce the nominal
wages of their employees, the interaction between inflation and wages becomes nonlinear in
face of downward nominal rigidities. Additionally, the zero lower bound for interest rates
also induces nonlinear relationships between inflation, interest rates and other variables,
as demonstrated by Grauwe and Ji (2019). Another source emerges from the degree of
economic uncertainty, for it increases the option value of postponing decisions, as argued
by Bloom (2009). Finally, Medeiros et al. (2019) observe that, if it is expensive to dismiss
workers, then hiring, which affects inflation, should be a nonlinear function of uncertainty.

Further obstacles exist. Indisputably, they may stem from the choice of variables
which can be systematically used for prediction, yielding reliable out-of-sample forecasts.
In the era of big data, multiple options are promptly available. Without solid models and
criteria to filter these variables, one becomes prone to data mining biases and overfitting.
As illustration, in an effort to compile and standardize macroeconomic time series for
academic research, McCracken and Ng (2016) provide a monthly database comprised by
more than 100 variables that can be neatly applied to forecast inflation, as Medeiros et
al. (2019) have demonstrated. However, it is conceivable that not all of these variables
are necessary for out-of-sample prediction. If this is the case, inputting them without
selection criteria may inevitably compromise the parsimony of the model and introduce

28 Chapter 1. Introduction

noise. Hence, techniques for dimension reduction and denoising are required to address
these issues.

In an attempt to tackle the aforementioned obstacles, the main objective of this work
is to investigate whether deep learning methods can generate more accurate out-of-sample
inflation forecasts than standard models reviewed in the related literature. The selection
of deep learning, a type of machine learning, to overcome the limitations of previous
approaches reflects the encouraging findings regarding its employment in real situations
where nonlinearities are ubiquitous; see Goodfellow, Bengio and Courville (2016) for details.
Indeed, many authors have successfully applied deep learning not only for time series
modeling, but also for complex tasks, such as pattern classification (LEROUGE et al.,
2015), speech recognition (LI; WU, 2015), and image processing (KIM et al., 2016), to list
a few; see Liu et al. (2017) for additional examples. In these contexts, nonlinear features
arise naturally, and deep learning has been particularly effective when dealing with them.

Curiously, until now, despite the potential of deep learning, applications to inflation
modeling are somewhat scarce. The literature review carried out unveils that Medeiros et
al. (2019) were among the first to survey and carefully examine several machine learning
models, evaluating their performance in forecasting inflation. Previously, authors such as
McAdam and McNelis (2005), Choudhary and Haider (2012), and Garcia, Medeiros and
Vasconcelos (2017) have focused solely on assessing individual models against straightfor-
ward benchmarks. For this reason, the work of Medeiros et al. (2019) is among the main
references for this dissertation. Briefly, the authors show that it is possible to consistently
beat univariate models, such as random walk and autoregressive ones, with gains as large
as 30% in terms of mean squared errors. The superiority of machine learning is verified in
multiple subsamples of the data collected and is robust in real-time experiments.

Despite the significant contributions provided by the authors, there are opportunities
for further research. Primordially, it must be highlighted that there is no consensus
regarding the superiority of nonlinear models. For instance, Álvarez-Díaz and Gupta (2016)
argue that accounting for nonlinearities does not necessarily provide statistical gains when
forecasting the US CPI. Meanwhile, Ülke et al. (2018) conclude that, although machine
learning models are more accurate under certain conditions, more parsimonious time series
models, such as the ARDL (Autoregressive Distributed Lag), may perform better in some
scenarios. Therefore, this topic demands additional academic scrutiny.

Another aspect to be discussed is the variety of machine learning methods available
in the literature, including those belonging to the deep learning category. In that sense,
Medeiros et al. (2019) seem to have focused on well-established models, but recent advances
in deep learning have brought forth a myriad of promising alternatives for time series
modeling, which are yet to be meticulously tested and appraised in the context of forecasting
macroeconomic variables. For demonstration, multiple examples, with positive results, can
be found in the surveys conducted by Atsalakis and Valavanis (2009), Ahmed et al. (2010),

29

Längkvist, Karlsson and Loutfi (2017), and Tkáč and Verner (2016). Thus, a study of
more modern approaches and their application for inflation forecasting is justified.

Before proceeding, it is paramount to establish the differences between deep learning
and machine learning. Succinctly, the former distinguishes itself by the flexibility and
predictive power that stem from the depth of the architecture of deep learning algorithms.
As Goodfellow, Bengio and Courville (2016) emphasize, they achieve higher performance
by learning to represent the world as a nested hierarchy of concepts, with each concept
defined in relation to simpler ones, and more abstract representations computed in terms
of less abstract ones. Accordingly, deep learning may be seem as one of many forms of
machine learning.

For the purpose of illustrating the variety of architectures, it is worth mentioning
LSTM (Long Short-Term Memory) networks, a versatile deep learning model that has been
successfully applied in sequential processing such as textual interpretation. Introduced
by Hochreiter and Schmidhuber (1997) and extended by Gers et al. (2000), Graves et al.
(2008), and Cho et al. (2014), LSTM networks form a special subset of RNN (Recurrent
Neural Networks) whose architecture is well-adapted to capture temporal dependencies in
data. This feature explains their power for text processing, since, in such applications, the
meaning of a word is not unconditional, depending on previous and upcoming words in a
given sentence. Greff et al. (2016) present other uses involving representative tasks, such
as handwriting recognition and polyphonic music modeling.

Analogously, in time series modeling, the dependent variable is assumed to be
explained by its past values and other independent variables. Hence, LSTM networks
might be suitable candidates to model this type of dependency in time series, justifying
their use for forecasting inflation and, thus, explaining why they are one of the models
examined in the present work. More precisely, a particular variation of LSTM network
introduced by Shi et al. (2015), called Convolutional LSTM network, or ConvLSTM for
short, is the focus due to its desirable flexibility for time series modeling and ability to
extract spatiotemporal features from the inputs. Here, Bao, Yue and Rao (2017), Essien
and Giannetti (2019), Fischer and Krauss (2018), Shi et al. (2015), and Wang, Qi and
Liu (2019) become valuable references, demonstrating the uses of LSTM and ConvLSTM
networks for time series, which can be immediately adapted for inflation with minor
adjustments.

Furthermore, deep learning methods can also be used for dimension reduction and
denoising. An example is the autoencoder, which is a type of neural network trained in
an unsupervised manner for data encoding and decoding. When applied to time series, it
can be seen as roughly equivalent to a nonlinear version of Principal Component Analysis
(PCA). However, as Wang, Yao and Zhao (2016) argue, unlike PCA, autoencoders can also
detect repetitive structure in the data. In various domains, these networks have achieved
positive results, outperforming alternative dimension reduction techniques; see Wang, Yao

30 Chapter 1. Introduction

and Zhao (2016) and Gu, Kelly and Xiu (2020).
Therefore, the contributions of this dissertation are threefold. First and foremost,

by scrutinizing deep learning methods and applications in inflation forecasting, there
is an opportunity to advance the literature related to the use of machine learning for
macroeconomic prediction, which is a burgeoning and ever-changing field of research. In
particular, it is possible to assess the potential of LSTM networks and their extensions,
namely ConvLSTM, in modeling macroeconomic time series through the development
of a novel deep learning model. For the preceding reasons, it is plausible to believe that
deep learning could yield compelling results in several contexts that demand forecasting
macroeconomic variables in general, without constraining itself to inflation.

Second, it is expected that, by using deep learning to model inflation, some knowledge
regarding the sources of nonlinearities within this variable can be acquired. As previously
contended, there is still no consensus with respect to the statistical gains of incorporating
nonlinearities in models used for inflation forecasting. Actually, through the application of
autoencoders, it becomes feasible to inspect the factor structure in the macroeconomic
dataset to diagnosis whether nonlinear interactions are existent. Consequently, the present
research may shed some light in these questions as well.

Finally, by examining denoising and dimension reduction techniques, this work
intends to measure the value of data preprocessing for macroeconomic forecasting. In the
era of big data, when multiple datasets are effortlessly available, data preparation becomes
prominent so as to avoid data mining biases. Bernanke and Boivin (2003) coined the term
data-rich environment precisely to describe these situations where both the number of
variables and the length of time series are large and close to each other. It is reasonable to
believe that, for macroeconomic time series, which are typically observed in low frequency,
generating few observations, this topic is critical.

The next chapters are organized as follows. In chapter 2, a thorough literature review
on inflation dynamics, econometric models, machine learning, and deep learning is put
forward, covering the fundamental aspects required to understand the challenges involved
in forecasting inflation, the origins of nonlinearities, and the reasons why deep learning
may be effective at dealing with these complexities.

In chapter 3, the model developed for forecasting inflation is introduced and discussed.
With this objective, convolutional LSTM networks and variational autoencoders are
explored and techniques for merging these networks into a single architecture for time
series modeling are presented and advocated.

Moreover, in chapter 4, the data employed when adjusting the models previously
discussed and the methodology on which this work is built is explained. In that sense, the
sources of the macroeconomic time series used for model estimation are set forth and the
techniques and tools used in the empirical analysis are scrutinized. Some subsections are
also devoted to explain the configuration and optimization of the neural networks fitted to

31

the aforementioned data.
In the sequence, chapter 5 encompasses the results of the empirical analysis, which

are detailed and examined. Briefly, this section summarizes the accuracy of the proposed
model and of the selected benchmarks in the designed experiments. Several performance
metrics are computed for this purpose, allowing the comparison via out-of-sample data.
Notably, the model proposed surpasses its benchmarks, corroborating that deep learning
can effectively capture the stochastic process that governs inflation in practice.

Finally, in chapter 6, the main conclusions of this research are reviewed. Possible
extensions of the current work are also suggested, laying ground for future projects in the
field.

33

2 LITERATURE REVIEW

In this section, the literature review regarding the main topics covered in this work
is carried out. With this purpose, initially a discussion on inflation forecasting and the
New Keynesian Phillips Curve is presented. Subsequently, usual econometric and machine
learning models with applications in Economics are introduced and debated. Finally, the
literature on deep learning models is scrutinized, with special attention to the architectures
that underpin the model advocated herein for inflation forecasting.

2.1 Inflation Forecasting

In the past decades, inflation forecasting has attracted the attention of both practi-
tioners and researchers, conceiving an extensive and prolific literature on the subject. The
focus on this econometric problem is explained by the prominent role played by inflation
in many real situations. In spite of the importance of forecasting inflation accurately,
improving upon simple models has been a daunting and frustrating task, as argued by
Medeiros et al. (2019). Furthermore, the literature review shows that there is no consensus
regarding which econometric model is more appropriate, yielding superior and consistent
forecasts.

With the aim of presenting the recent advances and analyzing the current status of
the academic research, we begin by examining the New Keynesian Phillips Curve (NKPC),
an usual starting point justified by its theoretical appeal. By scrutinizing the NKPC,
it is possible to demonstrate its limitations and the reasons explaining why forecasting
inflation is complex, demanding the employment of sophisticated econometric methods.
Later, alternatives are suggested, and deep learning is introduced as a promising solution.

2.1.1 New Keynesian Phillips Curve (NKPC)

As a theoretical framework for inflation dynamics, the New Keynesian Phillips
Curve (NKPC) is often resorted to as foundation and justification for some of the earlier
econometric models for forecasting inflation. Following Gali and Gertler (1999), Mavroeidis,
Plagborg-Møller and Stock (2014), and Gali (2015), it is assumed a small economy in
which monopolistic competitive firms face some type of constraints on price adjustment.

For the sake of simplification of the pricing rules and the consequent aggregation of
prices histories, the mechanism proposed by Calvo (1983) is adopted. Hence, it is assumed
that, in any given period, each firm has a fixed probability 1− θ of updating prices during
that period, where θ is independent of the time elapsed since the last adjustment. Thus,
with probability θ, prices will be kept unchanged.

Now, it is imposed that firms seek to maximize their profits and are identical, except
for the differentiated product they produce and for their pricing history. Additionally, we

34 Chapter 2. Literature Review

assume that firms face a conventional constant price elasticity of demand curve for their
products. In that context, it is possible to show that the aggregate price level pt evolves as
a convex combination of the lagged price level pt−1 and the optimal reset price p∗t (i.e. the
price chosen by firms that are able to adjust prices at t), as follows:

pt = θpt−1 + (1− θ)p∗t (2.1)

Under these conditions, let mcnt be the firm’s nominal marginal cost at t (as a
percentage deviation from the steady state) and let β denote a subjective discount factor.
Then the optimal reset price may be stated as:

p∗t = (1− βθ)
∞∑
k=0

(βθ)k Et
[
mcnt+k

]
(2.2)

where Et denotes the expected value conditional on the information available at instant t.
Therefore, in setting its price at t, a firm takes into account the expected future path of
nominal marginal cost, given the likelihood that its price may be kept fixed for several
periods ahead.

Now, let πt denote the inflation rate at t, and mct the percent deviation of the
firm’s real marginal cost from its steady state value. Using the previous equations, it is
manageable to derive an inflation equation of the form:

πt = βEt[πt+1] + λmct = λ
∞∑
k=0

βkEt[mct+k] (2.3)

where:
λ = (1− θ)(1− θβ)

θ
(2.4)

implying that inflation should equal a discounted stream of expected future marginal costs.
Next, it is possible to show that, adopting certain assumptions:

mct = κ(yt − y∗t) (2.5)

where (yt−y∗t) is the output gap and κ is the output elasticity of marginal cost. Combining
this formula with previous results, one obtains the classic NKPC:

πt = βEt[πt+1] + λκ(yt − y∗t) (2.6)

Estimation of the coefficients of this NKPC can be done as follows. Since, under rational
expectations, the error in the forecast of πt+1 is independent of the filtration Ft, then:

Et[(πt − λmct − βπt+1)zt] = 0 (2.7)

where zt is a vector of variables dated t and earlier, thus orthogonal to the inflation surprise
in period t+ 1. This allows the estimation via GMM (Generalized Method of Moments);
see Dennis (2006).

2.1. Inflation Forecasting 35

A natural extension of the previous NKPC involves the assumption of indexation.
That is, every period, some firms adopt a backward-looking rule-of-thumb to set prices.
This approach is developed by Gali and Gertler (1999) assuming that only a fraction of
firms adopt a Calvo-based, forward-looking rule to set prices. The remaining ones instead
use a simple rule-of-thumb that is based on the recent history of aggregate price behavior.
Hence, there is a certain degree of indexation in the economy, which is related to τ , the
fraction of inflation transferred to final prices by backward-looking firms. In this setting,
it is possible to demonstrate that the NKPC becomes:

πt = 1
1 + θβτ

(τπt−1 + βEt [πt+1]) + (1− θ)(1− θβ)
θ(1 + θβτ) κ(yt − y∗t) (2.8)

Thus, in this extension, current inflation depends not only on the output gap and on
inflation expectations, but also on past inflation.

2.1.2 Sources of Nonlinearities in Inflation Dynamics

In the previous subsection, the main assumptions of the NKPC were disclosed. In
essence, the derivation of the NKPC reveals that its original version and most variations
are a mixture of linear forward- and backward-looking models. That is, they assume the
form (MAVROEIDIS, 2005):

πt = βE(πt+1|Ft) + γπt−1 + dt (2.9)

where πt is a decision variable (i.e. inflation), dt is a “driving” or “forcing” variable, usually
deemed exogenous, and E(πt+1|Ft) is the expectation of πt+1 conditional on the filtration
at time t. As argued by Mavroeidis (2005), the popularity of such models arises from
the fact that they reproduce a forward-looking economic decision process, addressing the
so-called Lucas Critique.

In practice, despite the appeal of this family of models, many issues have been
identified, explaining why the NKPC displays weak performance when adjusted using real
data, as shown by Atkeson and Ohanian (2001) and others. Indeed, Atkeson and Ohanian
(2001) argue that the likelihood of accurately predicting changes in inflation rate via the
outcomes of these models produces results statistically equivalent to using a coin flip for
forecasting.

With respect to the issues highlighted in the literature, empirical studies have
reported that a linear NKPC with constant coefficients is unsuitable due to the presence
of a time-varying slope. As illustration, Blanchard (2016) argues that, in US, the slope
has substantially declined in the past decades, which is unfeasible in the classic NKPC
framework. Such limitations pose several hindrances, for the existence of nonlinearities in
the Phillips curve has material implications for monetary policy, as shown by Schaling
(2004).

36 Chapter 2. Literature Review

Moreover, rigidities may induce nonlinearities in inflation, creating more complex
dynamics. Indeed, Daly and Hobijn (2014) develop a model of monetary policy with
downward nominal wage rigidities stemming from the fact that wage cuts are rare and,
consequently, log wage changes follow non-normal distributions. They demonstrate that
both the slope and the curvature of the Phillips curve vary according to the level of
inflation and the intensity of such rigidities. This is verified both in the short and long-run
curves, which, again, violates the traditional models for the NKPC. Their findings are
consistent with evidence suggesting that, in certain periods when unemployment declines,
wage growth may be modest or even nonexistent.

Supplementary material is provided by Correa and Minella (2010), who examine
the presence of nonlinear mechanisms of pass-through from the exchange rate to inflation
in Brazil. In particular, they estimate a Phillips Curve with thresholds to replicate
this behavior. The results suggest that the short-run pass-through is higher when the
economy is growing faster, when the exchange rate depreciates above some threshold
and when exchange rate volatility is lower. In a similar fashion, using Markov-switching
autoregressive models, Binner et al. (2006) conclude that these regime-switching systems
capture nonlinearities in inflation data and improve forecasting performance.

Furthermore, Ball and Mazumder (2011) present a puzzle that arises when Phillips
curves are estimated over 1960-2007: inflation should have fallen by more than it did. The
puzzle is resolved with two modifications of the Phillips curve stemming from theories
of costly price adjustment: (a) core inflation is measured using the weighted median of
consumer price inflation rates across industries; and (b) the slope of the Phillips curve is
allowed to vary with the level and variance of inflation. The authors also conclude that
the Great Recession provides fresh evidence against the New Keynesian Phillips curve
with rational expectations.

Finally, as another piece of evidence in favor of nonlinearities, Aruoba, Bocola and
Schorfheide (2017) develop a new class of time series models to identify nonlinearities in
data and evaluate DSGE models. They estimate a DSGE model with asymmetric wage
and price adjustment costs, due to which it becomes possible to match the nonlinear
inflation and wage dynamics observed in practice.

Other aspects of the NKPC must also be restructured so as to address empirical
observations. For instance, Coibion and Gorodnichenko (2015) propose that an expectation-
augmented Phillips curve that proxies firms’ inflation expectations by household expecta-
tions is capable of explaining the missing disinflation during the Great Recession. The
authors identify information rigidity in US and international data and document evidence
of state-dependence in the expectation formation process.

Naturally, there is evidence against the adoption of nonlinear models as well. For
instance, Álvarez-Díaz and Gupta (2016) argue that accounting for nonlinearity does
not necessarily provide statistical gains when forecasting US CPI. Meanwhile, Ülke et

2.2. Conventional Econometric Models 37

al. (2018) conclude that, although machine learning models are more accurate under
certain conditions, more parsimonious time series models, such as the ARDL model, may
outperform in some scenarios.

However, even if one assumes nonlinear interactions do not exist or are unnecessary,
the fact that coefficients change through time is sufficient to demand more sophisticated
models for inflation forecasting. Also, it is worth noting that inflation displays heavy
tails (MONACHE; PETRELLA, 2017) and time-varying volatility (CLARK; DOH, 2014),
amplifying the challenges discussed in this subsection.

2.2 Conventional Econometric Models

In this section, we begin exploring econometric models commonly used for macroe-
conomic time series. The objective here is to introduce these models so as to justify the
selection of some of them as benchmarks for the deep learning model developed for inflation
forecasting. Since they are merely accessory and not the focus of this work, solely a brief
introduction is provided herein. The interested reader may seek Hastie, Tibshirani and
Friedman (2008), James et al. (2013), Tsay (2010), and other references cited for further
details.

2.2.1 ARFIMA

The ARFIMA model was introduced by Hosking (1981). It is commonly used for
time series that display long-term memory, defined as variables whose autocorrelation
function (ACF) exhibits polynomial decay in time, in opposition to an exponential decay
implicit in SARIMA models, for instance. More formally, these series are characterized by
a fractional degree of integration.

Therefore, ARFIMA is based on fractional differencing. Following Tsay (2010), the
model is defined as:

(1−B)dxt = at, −0.5 < d < 0.5 (2.10)

where xt is a given time series and at is a white noise. As shown in Tsay (2010), if d < 0.5,
then xt is a weakly stationary process. If d > −0.5, then xt is invertible and has an infinite
AR representation. For −0.5 < d < 0.5, the ACF of xt is:

ρk = d(1 + d) · · · (k − 1 + d)
(1− d)(2− d) · · · (k − d) , k = 1, 2, . . . (2.11)

Therefore:
ρk ≈

(−d)!
(d− 1)!k

2d−1 as k →∞ (2.12)

meaning that the ACF decays at a polynomial rate.
An application of ARFIMA models for inflation forecasting is provided by Baillie,

Chung and Tieslay (1996). The authors implement a novel procedure to obtain approximate

38 Chapter 2. Literature Review

maximum likelihood estimates of ARFIMA-GARCH process. The model is employed on
the analysis of monthly inflation rates for ten different countries, and the authors find
strong evidence of long memory with mean-reverting behavior for almost all countries in
the sample considered, with exception of Japan.

2.2.2 GARCH

Developed by Bollerslev (1986), the GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) model is a widespread approach for time series marked by time-varying
volatility. The GARCH(m,n) process is described by the following system of equations
(TSAY, 2010):

rt = µt + εt, εt ∼ N(0, σ2
t) (2.13)

σ2
t = α0 +

m∑
i=1

βiε
2
t−i +

n∑
j=1

γjσ
2
t−j (2.14)

max(m,n)∑
k=1

(βk + γk) < 1 (2.15)

α0 > 0, βi ≥ 0, γj ≥ 0 (2.16)

where rt is a given time-series, µt is the mean process, εt is a sequence of i.i.d. random
variables with mean 0 and variance 1, σ2

t is the variance of rt, and α0, βi, i = 1, . . . ,m,
and γj, j = 1, . . . , n, are coefficients to be estimated.

An application of GARCH models in the context of inflation forecasting is provided by
Kontonikas (2004). The paper investigates the connection between inflation and uncertainty
and the effects of inflation targeting using British data over the period of 1972–2002. The
results suggest a positive relationship between past inflation and current uncertainty, and
indicate that it would be beneficial for countries with implicit targeting to adopt formal
inflation targets.

2.2.3 VAR and Cointegration

According to Lütkepohl (2005), a VAR(p) model (Vector Autoregressive Model of
order p) is defined as:

yt = µ+ A1yt−1 + · · ·+ Apyt−p + ut, t = 0, 1, 2, . . . (2.17)

where yt is a k × 1 random vector, the Ai are fixed k × k coefficient matrices, µ is a
fixed k × 1 vector of intercept terms allowing for the possibility of a nonzero mean E(yt).
Finally, ut is a k-dimensional white noise or innovation process. The covariance matrix
E(ututt) = Σu is assumed to be nonsingular.

2.2. Conventional Econometric Models 39

Under general conditions, for a k-dimensional unit-root nonstationary time series,
cointegration exists if there are less than k unit roots in the system (TSAY, 2010). Let h be
the number of unit roots in the k-dimensional series yt. Cointegration exists if 0 < h < k,
and the quantity k − h is called the number of cointegrating factors. Alternatively, the
number of cointegrating factors is the number of different linear combinations, called
cointegrating vectors, that are unit-root stationary.

An insightful reference of a cointegration model applied to inflation forecasting is
provided by Cologni and Manera (2008). The authors propose a structural cointegrated
VAR model for G-7 countries so as to investigate the direct impacts of oil price shocks on
output and prices, as well as the effects and reactions of monetary variables to external
shocks. The study is motivated by the fact that sharp increases in oil prices are generally
perceived as a major contributor to business cycle asymmetries.

The structural cointegrated VAR model starts by considering the following reduced-
form vector error correction model (VECM) with k variables (COLOGNI; MANERA,
2008):

∆yt = Πyt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + ut (2.18)

where yt, t = 1, . . . , T , is a k × 1 vector of time series and Π is a k × k matrix which has
reduced rank r < k and can be decomposed as Π = αβt. Matrices α and β have dimension
k × r and contain the loading coefficients and the cointegration vectors, respectively.
Moreover, Γi, i = 1, . . . , p− 1, are k × k short-run coefficients matrices, and ut is a white
noise error vector with zero mean and nonsingular covariance matrix Σu.

The next step comprises the identification of structural innovations, which induce
informative responses of the variables in the system. In particular, the effects of the
fundamental shocks εt on the system variables yt can be described by the following
structural specification:

A∆yt = Ψyt−1 + Λ1∆yt−1 + . . .+ Λp−1∆yt−p+1 + νt (2.19)

where Ψ and Λi, i = 1, . . . , p − 1, are coefficients and the k × 1 vector of structural
disturbances νt has zero mean and covariance matrix Σν . The responses to the economic
shocks εt, forecast errors ut must be linked to the structural shocks εt. Multiplying both
sides of the previous equation by A−1 gives the reduced-form of equation Equation 2.18,
where Π = A−1Ψ and Ψi = A−1Λi, i = 1, 2, . . . , p− 1 and:

ut = A−1εt = Bεt (2.20)

Equation 2.20 relates the reduced-form disturbance ut to the underlying structural shocks
εt. As put by Cologni and Manera (2008), the analysis of the effects of the underlying
structural shocks on the system variables requires to recover the k2 elements of B. A set
of restrictions arising from the underlying economic theory may be used, and it is possible
to write:

Σu = E
[
utu

t
t

]
= BE

[
εtε

t
t

]
= BΣεB

t (2.21)

40 Chapter 2. Literature Review

For a unique specification of the k2 elements of B, at least k(k − 1)/2 further restrictions
are necessary.

2.2.4 Regime-Switching Models

Regime-switching models are popular for nonstationary time series. Here, two common
techniques are described: (1) Markov chain models; and (2) threshold autoregressive models.

2.2.4.1 Markov Chain Models

In their seminal work, Hamilton (1989) proposes a tractable approach to modeling
changes in regime. The idea is to link the parameters of an autoregression to the outcomes
of a discrete-state Markov process. By introducing this flexibility, it becomes possible to
model shifts in the mean of a nonstationary series, for instance.

Following Hamilton (1989) and Tsay (2010), a time series xt is governed by a Markov
switching autoregressive (MSA) model if it satisfies:

xt =

c1 +∑p
i=1 φ1,ixt−i + a1t, if st = 1

c2 +∑p
i=1 φ2,ixt−i + a2t, if st = 2

(2.22)

where st assumes values in {1, 2} and is a first-order Markov chain with transition
probabilities:

p(st = 2|st−1 = 1) = p1 (2.23)

p(st = 1|st−1 = 2) = p2 (2.24)

The innovations a1t and a2t are sequences of i.i.d. random variables with mean zero and
finite variance and are independent of each other. Hamilton (1989) shows an application
of MSA models using GNP data to successfully identify business cycles.

2.2.4.2 Threshold Autoregressive Models

As established by Tsay (2010), a time series yt is said to follow a k-regime Self-
Exciting Threshold Autoregressive Model (SETAR) model with threshold variable yt−d if
it satisfies:

yt = φ
(j)
0 + φ

(j)
1 xt−1 − · · · − φ(j)

p xt−p + a
(j)
t , γj−1 ≤ yt−d < γj (2.25)

where k and d are positive integers, j = 1, . . . , k, γi are real numbers such that −∞ =
γ0 < γ1 < · · · < γk−1 < γk =∞, the superscript (j) signifies the regime, and a(j)

t are i.i.d.
sequences with mean 0 and variance σ2

j and are mutually independent for different j. The
parameter d determines the delay and γj are the thresholds. An implicit assumption is that
each regime has a distinct AR model, otherwise the number of regimes could be reduced.

2.2. Conventional Econometric Models 41

Threshold models have had some success in modeling nonlinearities in inflation
dynamics. Indeed, using monthly data over the period 1976–2002, Khadaroo (2005) detects
significant nonlinearities in the inflation rates of India, Singapore, and South Africa. The
author then estimates a two-regime SETAR model and observes material improvement
over the corresponding linear AR model.

2.2.5 Factor Models

Following Stock and Watson (2016), dynamic factor models (DFM) represent the
evolution of a vector of N observed time series, Xt, in terms of a reduced number of
unobserved common factors evolving over time, plus uncorrelated disturbances representing
measurement error and/or idiosyncratic dynamics of the individual series. Such model can
be written in two ways: (1) the dynamic form, expressing the dependence of Xt on lags
(and possibly leads) of the factors explicitly; or (2) the static form, representing those
dynamics implicitly.

Formally, according to Stock and Watson (2016), the dynamic form of the DFM is
expressed as:

Xt = λ(L)ft + et (2.26)

ft = Ψ(L)ft−1 + ηt (2.27)

where the lag polynomial matrices λ(L) and Ψ(L) are N × q and q × q, respective, and ηt
is a q × 1 vector of serially uncorrelated mean-zero innovations to the factors. In general,
et can be serially correlated, although it is assumed that E

(
etη

t
t−k

)
= 0,∀k. It must be

emphasized that, if et is serially correlated, then the preceding specification is incomplete,
requiring a equation that describes the temporal evolution of et. The static form rewrites
this set of equations in terms of r static factors Ft, instead of q dynamic factor ft, where
r ≥ q; see Stock and Watson (2016) for further details.

The main advantage of DFM in macroeconometric applications is the ability to
reduce the complex comovements of a potentially large number of observable variable into a
small set of factors that explain most of the common fluctuations of all the series (STOCK;
WATSON, 2016). In that sense, they are an example of a larger class of state-space or
hidden Markov models, in which observable (measurable) variables are written in terms of
unobserved (latent) ones. The latter evolve according to some lagged dynamics with finite
dependence (STOCK; WATSON, 2016).

According to Bai and Ng (2008), targeted factors can be designed by targeting
the predictors, offering an alternative approach for designing factor models. Through the
method denominated hard thresholding, the authors propose a strategy to select the relevant
predictors. The idea consists on initially identifying statistically significant predictors of
the dependent variables and, subsequently, running PCA to extract the factors.

42 Chapter 2. Literature Review

Another version is introduced by Bai and Ng (2009), who merge factor models with
the boosting technique as a strategy for selecting the predictors in factor-augmented
autoregressions. The authors also develop a stopping rule for boosting to prevent the
model from being overfitted with estimated predictors. The empirical analysis corroborates
the success of factor boosting.

An example of empirical application in Macroeconomics is provided by Gupta and
Kabundi (2011), who employs large factor models that accommodate a wide set of 267
macroeconomic time series for forecasting the per capita growth rate, inflation, and the
nominal short-term interest rate for South Africa. The model proposed outperforms
alternatives such as VAR, Bayesian VAR and DSGE models.

2.3 Shrinkage Methods

In Statistics, shrinkage methods are used to reduce coefficient variance and improve
out-of-sample performance in regression analysis. They encompass techniques that constrain
or regularize coefficient estimates, or, equivalently, that shrink these estimates towards zero,
improving goodness-of-fit (JAMES et al., 2013). In the next subsections, some shrinkage
approaches that will be later used as benchmarks are discussed.

2.3.1 LASSO Regression

LASSO (Least Absolute Shrinkage and Selection Operator) regression is a method
popularized by Tibshirani (1996). The motivation behind this approach is that, in many
practical situations, mainly when dealing with large datasets, only a subset of the existing
covariates is required to provide a satisfactory explanation of the variance of the independent
variable.

Therefore, some coefficients in the regression are shrunk towards zero by adding a
penalty to the loss function that grows with the size of each coefficient, forcing some of
them to be exactly zero (HASTIE; TIBSHIRANI; FRIEDMAN, 2008). Thus, for a linear
regression of the form:

y = Xβ + ε (2.28)

The LASSO estimator becomes:

β̂ = arg min
β

‖y −Xβ‖2
2+λ

k∑
j=1
|βj|

 (2.29)

where β is the k×1 vector of parameters, y is the vector of T observations of the dependent
variable, X is a T×k matrix containing the independent variables, ε is a vector of residuals,
and ‖·‖2 denotes the Euclidean norm. In addition, λ is a tuning parameter that determines
the relative importance between minimizing the sum of squared residuals and removing

2.3. Shrinkage Methods 43

uninformative variables. Although λ can be predefined by the user, information criteria
and cross-validation are common approaches for the estimation of this parameter.

Clearly, the penalty introduced assumes the form of a `1-norm, which makes the
solution nonlinear in y and is more restrictive than the `2-norm used in the Ridge regression
discussed subsequently. This imposes that some parameters of the regression become exactly
equal to zero when the tuning parameter λ is sufficiently large. As implication, LASSO
imposes an efficient variable selection mechanism in exchange of biasing the estimate β̂
(consistency is preserved, however). The drawback is that there is no closed form expression
for β̂, requiring numerical solutions.

A Bayesian modification of the LASSO estimator was introduced by the seminal
work by Park and Casella (2008) and extended by Hans (2009), among others. Initially, it
should be noted that the standard form is by itself Bayesian, since, as demonstrated by
Hastie, Tibshirani and Friedman (2008) and Park and Casella (2008), LASSO estimates
for linear regression parameters can be interpreted as a Bayesian posterior mode estimate
when the regression parameters have independent Laplace priors. That is, LASSO can be
expressed under the Bayesian framework as:

p(y|β, σ2, τ) = N(y|Xβ, σ2In) (2.30)

p(β|λ, σ2) =
(
λ

2σ

)k
eλσ

−1‖β‖1 (2.31)

where ‖·‖ is the `1 norm and λ is a hyperparameter. Conditioning on σ2 is crucial, because
it guarantees a unimodal full posterior (PARK; CASELLA, 2008).

Seeking to extend this framework and incorporate a Gibbs sampler, Park and Casella
(2008) suggest the following hierarchical representation of the full Bayesian model:

y|µ,X, β, σ2 ∼ N(µ1n +Xβ, σ2In) (2.32)

β|σ2, τ 2
1 , . . . , τ

2
k ∼ Nk(0k, σ2Dτ) (2.33)

Dτ = diag(τ 2
1 , . . . , τ

2
k) (2.34)

σ2, τ 2
1 , . . . , τ

2
p ∼ π(σ2)dσ2

k∏
j=1

λ2

2 e
−λ2τ2

j /2dτ 2
j (2.35)

σ2, τ 2
1 , . . . , τ

2
k > 0 (2.36)

where µ is a hyperparameter which may be given an independent, flat prior, and 1n is a
vector of ones. An improper prior density π(σ2) = 1/σ2 or any inverse-gamma prior for
σ2 may be used to maintain conjugacy. Meanwhile, λ may be approximated iteratively

44 Chapter 2. Literature Review

throughout the execution of the Gibbs sampler or a prior may be selected. Park and
Casella (2008) propose the following class of gamma priors with parameters r and δ:

π(λ2) = δr

Γ(r)
(
λ2
)r−1

e−δλ
2
, r > 0, δ > 0 (2.37)

where Γ(·) is the Gamma function.
LASSO-based approaches for time series modeling have had success in macroe-

conomics. As a case in point, evaluating the predictive ability of multiple models for
forecasting twenty important macroeconomic variables, Li and Chen (2014) show that
combining forecasts from LASSO-based models with those from dynamic factor models
can reduce the out-of-sample MSE. The authors also verify that LASSO-based models
outperform dynamic factor ones in terms of out-of-sample performance. Ultimately, they
conclude that LASSO can be useful for extracting information and formulating economically
meaningful predictors.

2.3.2 Ridge Regression

Developed by Hoerl and Kennard (1970), the Ridge estimator for a linear regression
is defined as follows:

β̂ = arg min
β

‖y −Xβ‖2
2+λ

k∑
j=1

β2
j

 (2.38)

where λ is a predefined shrinkage parameter chosen by the user. Mathematically, it
corresponds to a special case of the Tikhonov regularization for ill-posed problems.

Unlike LASSO, whose advantage is covariate selection, the Ridge estimator attempts
to regularize by shrinking parameters associated with redundant predictors without
completely excluding them. Hence, at the cost of introducing some bias in the estimator
of β, the Ridge estimator tackles multicollinearity, which emerges when there are many
correlated variables in a linear regression model (HASTIE; TIBSHIRANI; FRIEDMAN,
2008).

Another advantage of Ridge regression is that the optimization problem formulated
in the previous equation is always convex for λ > 0 and its solution can be expressed in
closed-form as:

β̂ = (X tX + λI)−1X ty (2.39)

where X t denotes the transpose of X. As one can infer from the previous equation, similarly
to the OLS, the solution is a linear function of y. The addition of the identity matrix
to X tX ensures a single solution exists even if this product results in a singular matrix.
Analogously to the LASSO estimator, the Ridge estimator adds a bias to the estimator β̂
in order to achieve regularization. Still, consistency remains intact. Also, λ may also be
set using cross-validation or information criteria, balancing goodness-of-fit with parsimony.
A Bayesian version of Ridge also exists and can be implemented using the approach by
Tipping (2001), for instance.

2.4. Ensemble Models 45

Exemplifying the application of Ridge estimators for financial and macroeconomic
variables, Kim and Swanson (2014) empirically assess the predictive accuracy of a large
group of models based on principal components and shrinkage methods, including Bayesian
model averaging, bagging, boosting, least angle regression, Ridge, to name a few. The
results confirm that model averaging does not dominate other well calibrated and specified
models. In addition, merging factor / shrinkage methods often yields superior accuracy.

2.3.3 Elastic Net

Elastic Net is a generalization of LASSO and Ridge estimators, including both as
particular cases (HASTIE; TIBSHIRANI; FRIEDMAN, 2008). Essentially, Elastic Net is
a convex combination of `1- and `2-norm. Thus, it simultaneously regularizes and selects
the most relevant variables. The estimator β̂ is the solution of:

β̂ = arg min
β

‖y −Xβ‖2
2+αλ

k∑
j=1
|βj|+(1− α)λ

k∑
j=1

β2
j

 (2.40)

The parameter α ∈ [0, 1] controls the weights given to each norm and, together with λ,
can be found via cross-validation or minimization of information criteria over a grid of
candidate values.

2.4 Ensemble Models

Ensemble learning is a strategy used to produce more accurate and stable models.
Essentially, it involves building a prediction model by combining the strengths of a collection
of simpler base models (HASTIE; TIBSHIRANI; FRIEDMAN, 2008).

2.4.1 Gradient Boosting and AdaBoost

According to Friedman (2002), gradient boosting builds additive regression models
by sequentially fitting a simple parameterized function to current “pseudo”-residuals by
least squares at each iteration. Mathematically, in a general function estimation problem,
one wants to find a function F ∗(x) that maps a vector of explanatory variables x to a
dependent variable y with the goal of minimizing the expected value of some predefined
loss function L. That is:

F ∗(x) = arg min
F (x)

Ex,y [L(y, F (x))] (2.41)

Boosting approximates F ∗(x) by an additive expansion of the form (FRIEDMAN, 2002):

F (x) =
M∑
m=0

βmh(x; am) (2.42)

46 Chapter 2. Literature Review

where h(x; am) are simple, parameterized functions in am. Both βm and am are jointly fit
to the training data in a forward “stage-wise” procedure, starting with an initial guess
F0(x), and then, for m = 1, 2, . . . ,M :

(βm, am) = arg min
β,a

N∑
i=1

L (yi, Fm−1(xi) + βh(xi; a)) (2.43)

where N is the number of observation in the sample collected and:

Fm(x) = Fm−1(x) + βmh(x; am) (2.44)

Gradient boosting approximately solves Equation 2.43 for an arbitrary differentiable
loss L in two stages. First, the algorithm fits h by least squares:

am = arg min
ρ,a

N∑
i=1

[ŷim − ρh(xi; a)]2 (2.45)

where:
ŷim = −

[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(2.46)

Then, given h(x; am), the optimal βm can be determined:

βm = arg min
β

N∑
i=1

L (yi, Fm−1(xi) + βh(xi; am)) (2.47)

This solving strategy replaces a nontrivial function optimization problem Equation 2.43
by one based on least squares, followed by a single parameter optimization in terms of the
loss L (FRIEDMAN, 2002). Adaptive boosting, or AdaBoost, works in a similar manner,
minimizing an exponential loss function and adjusting the parameters accordingly; see
Collins, Schapire and Singer (2002).

2.4.2 Bagging

Boostrap aggregation, or bagging, is a general procedure for variance reduction in
econometric models. The model was originally proposed by Breiman (1996), who advocated
the combination of forecasts from several distinct models fitted for multiple bootstrap
samples. Tests conducted on real and simulated data sets using classification and regression
trees and other methods demonstrate that bagging can yield substantial accuracy gains.

Inspired by Hastie, Tibshirani and Friedman (2008), initially it is considered a
regression problem where we fit a model to a training data Z = (x1, y1), . . . , (xn, yn),
yielding the prediction function f̂(x) for input x. The bagging technique averages this
prediction over a collection of bootstrap samples, which contributes for variance reduction.
In practice, for each bootstrap samples Z∗b , b = 1, 2, . . . , B, the model is fitted and gives
prediction f̂ ∗b (x). The bagging estimate is then defined by:

f̂bagging(x) = 1
B

B∑
b=1

f̂ ∗b (x) (2.48)

2.5. Machine Learning Models 47

The expression above is a Monte Carlo estimate of the true bagging estimate, approaching
it as B →∞.

In Macroeconomics, Inoue and Kilian (2008) analyzed the usefulness of bagging in
forecasting economic time series. The empirical results reveal that bagging can achieve
expressive reductions in prediction mean-square errors in inflation forecasting, comparable
to methods such as Ridge regression, LASSO, and Bayesian shrinkage predictor.

2.5 Machine Learning Models

Machine learning is a generic term that refers to techniques that allow computer
systems to improve with experience and data. As defined by Goodfellow, Bengio and
Courville (2016), deep learning is a type of machine learning that achieves great power and
flexibility by learning to represent the world as a nested hierarchy of concepts. Hence, deep
learning distinguishes itself by the versatility and predictive power that stem from the
depth of the architecture of deep learning algorithms. It should be regarded as a subclass
of machine learning, as shown in Figure 1.

M
ac
hi
ne

Le
arn

ing

Re
pre

sent
ation Learning

Deep Learning

Figure 1 – Illustration of how machine learning, representation learning, and deep learning
concepts are intertwined.

2.5.1 Random Forests

Random Forests is a model introduced and popularized by Breiman (2001). It involves
the combination of tree predictors in a way such that each tree depends on the values of a
random vector sampled independently and with the same distribution for all trees in the
forest (BREIMAN, 2001). In that sense, the model represents a substantial modification of
bagging, since it builds a large collection of de-correlated trees for posterior averaging, as
claimed by Hastie, Tibshirani and Friedman (2008). On many problems, the performance
of Random Forests is comparable to boosting; however, they are simpler to train and tune
(HASTIE; TIBSHIRANI; FRIEDMAN, 2008). Indeed, such properties emerge from the

48 Chapter 2. Literature Review

fact that Random Forests manage to reduce the variance of traditional regression trees, as
advocated by Vasconcelos (2018).

In a broader view, Random Forests belong to the class of regression trees estimators.
Examples are reproduced in Figure 2. Vasconcelos (2018) defines the method as a collection
of flexible nonparametric models that recursively partition the set of independent variables
into subsets, each modeled using regression methods. Through Figure 2, one may observe
how a regression tree works. The bottom left panel unveils that, in this example, variables
X1 and X2 were divided to produce five regions, Rj, j = 1, . . . , 5, in which the dependent
variable is predicted to be a constant cj. Each region is defined according to the value
assumed by X1 and X2. For instance, region R1 is associated with X1 ≤ t1 and X2 ≤ t2,
where tk, k = 1, 2, 3, 4, are parameters to be estimated.

Figure 2 – Illustration of regression trees. The bottom right panel brings the perspective
plot of the prediction surface associated with the tree appearing in the bottom
left. Source: Hastie, Tibshirani and Friedman (2008).

According to Vasconcelos (2018), regression trees may be grown as follows. Assume
that there are p explanatory variables such that xt = (x1,t, . . . , xp,t), for t = 1, . . . , T , where
xi,t is the observed value of the i-th variable Xi in period t. Proceeding backwards, suppose
that, after determining splitting variables and points, M regions are found. Adopting

2.5. Machine Learning Models 49

as criterion the minimization of squared residuals, the constants ĉm, m = 1, . . . ,M , are
defined as:

ĉm = arg min
cm

T∑
t=1

Ixt∈Rm(yt − cm)2 =
∑T
t=1 Ixt∈Rmyt∑T
t=1 Ixt∈Rm

(2.49)

where Ixt∈Rm is the indicator function that assumes value 1 if, and only if, xt ∈ Rm, and
value 0 elsewhere.

The growth of the regression tree is controlled through the sum of squared errors.
Consider a splitting variable Xj and a split point s to partition the set of independent
variables into two regions, namely, R1(j, s) = X|Xj ≤ s and R2(j, s) = X|Xj > s. The
pair (j, s) is determined by solving:

min
j,s

[
min
c1

T∑
t=1

Ixt∈R1(yt − c1)2 + min
c2

T∑
t=1

Ixt∈R2(yt − c2)2
]

(2.50)

The process is repeated iteratively on each of the resulting regions. Regarding the stopping
criterion, one must initially recognize the trade-off between overfitting and underfitting
related to the size of a tree. That is, a large tree may present several regions and parameters,
providing a superb performance in-the-sample, but performing poorly out-of-sample. A
small tree may be unable to capture the complexity of the data and also result in a
lackluster out-of-sample accuracy.

An way to address this trade-off is the application of Random Forests. A Random
Forest is a collection of trees, each specified in a bootstrapped sample of the original data
(VASCONCELOS, 2018). The algorithm for regression or classification problems can be
summarized as follows (HASTIE; TIBSHIRANI; FRIEDMAN, 2008):

1. For b = 1 to B:

a) Draw a bootstrap sample Z of size N from the training data;

b) Grow a random-forest tree TB to the bootstrapped data, by recursively repeating
the following steps for each terminal node of the tree, until the minimum node
size nmin is reached: (i) select m variables at random from the p variables; (ii)
pick the best variable/split-point among the m; and (iii) split the node into
two daughter nodes.

2. Output the ensemble of trees TBb=1.

For regression problems, prediction at a new point x is carried out via:

f̂Brf (x) = 1
B

B∑
b=1

Tb(x) (2.51)

Likewise, in a classification setting, let Ĉb(x) be the class prediction of the bth random-
forest tree. Then ĈB

rf (x) is the majority vote of Ĉb(x)Bb=1. With respect to the parameter
m, the default values are m = p/3 for regression and m = √p for classification trees.

50 Chapter 2. Literature Review

Breiman (2001) highlights the following desirable characteristics of Random Forests,
explaining their widespread use in many practical applications:

1. Its accuracy is as strong as Adaboost and sometimes better;

2. There is robustness against outliers and noise;

3. It is faster than bagging or boosting;

4. It provides helpful internal estimates of error, strength, correlation, and variable
importance;

5. It is simple and easily parallelized.

Due to its versatility and statistical power, several applications of Random Forests
are found in the literature. For instance, Chen et al. (2017) propose a multiple Random
Forests model, integrated with wavelet transforms, for the prediction of daily urban water
consumption, achieving superior performance against the benchmarks. Meanwhile, Nti,
Adekoya and Weyori (2019) develop a Random Forest model for the prediction of stock
prices using macroeconomic variables as inputs, obtaining lower mean absolute errors
compared with other time-series techniques.

2.5.2 Bayesian Regression Trees

The Bayesian Additive Regression Trees (BART) model was developed by Chipman,
George and McCulloch (2010) as a “sum-of-tree” model where each regression tree is
constrained by a regularization prior to be a weak learner. Fitting and inference can be
accomplished through iterative Bayesian backfitting MCMC algorithm, generating samples
from a posterior. As put by Chipman, George and McCulloch (2010), BART is effectively
a nonparametric Bayesian regression approach which uses dimensionally adaptive random
basis elements.

Mathematically, suppose that one desires to make inference about an function f that
predicts an output Y using a p-dimensional vector of inputs x = (x1, . . . , xp) when:

Y = f(x) + ε, ε ∼ N(0, σ2) (2.52)

It is feasible to model, or at least approximate, f(x) = E(Y |x) by a sum of m regression
tree such that:

f(x) ≈ h(x) ≡
m∑
j=1

gj(x) (2.53)

where each gj denotes a regression tree. Thus, it is possible to approximate Equation 2.52
by a sum-of-trees model:

Y = h(x) + ε, ε ∼ N(0, σ2) (2.54)

2.5. Machine Learning Models 51

The essential idea here is to elaborate this model by imposing a prior that regularizes the
fit by keeping the individual tree effects small (CHIPMAN; GEORGE; MCCULLOCH,
2010). As a consequence, the set formed by gj becomes a dimensionally adaptive random
basis of “weak learners” and, by weakening their effects, BART conceives a sum of trees,
each of which explains a small and different portion of f .

Fitting is carried out via a tailored version of Bayesian back-fitting MCMC that
iteratively constructs and fits successive residuals. Simultaneously, inference relies on
iterations of the back-fitting algorithm, corresponding to MCMC samples from the induces
posterior over the sum-of-trees model space (CHIPMAN; GEORGE; MCCULLOCH, 2010).

For time series prediction, an example of application is presented by Prüser (2019),
who employs BART to forecast macroeconomic time series in a predictor-rich environment.
The study allows to conclude that BART is a competitive model, exhibiting decent
performance when handling high dimensional data sets in a macroeconomic context.

2.5.3 K-Nearest Neighbors

K-Nearest Neighbors (k-NN for short) is a popular nonparametric machine learning
model. Although its foundations have been discovered back in the 1950s, Altman (1992)
and others contributed to its extension and popularity. Essentially, it is a model used in
classification and regression problems and trained using supervised learning. According
to Hastie, Tibshirani and Friedman (2008), in the first case, given a query point x0,
k-NN finds k training points x(r), r = 1, . . . , k closest in distance to x0, and then classify
using majority vote among the k neighbors. There are multiple metrics to gauge distance.
A popular one is the Euclidean distance, but other options exist, such as Mahalanobis
distance.

Following Song et al. (2017), k-NN regression relies on learning by comparing
given test instances with the training set. For a selected distance metric d, let T =
(x1, y1), . . . , (xn, yn) be the training set. Also, let xi = (xi1, . . . , xim) be the ith instance
denoted by m attributes and associated with output yi, and n be the number of instances.
For a given test instance x, for which a prediction ŷ is desired, the algorithm proceed as
follows. First, the points xi are ranked in terms of the distance di to x. Considering the k
points closest to x, the forecast ŷ is defined as:

ŷ = 1
k

k∑
i=1

yi(x) (2.55)

where yi(x) depends on x because the k points selected are based on their distance to x.

2.5.4 Support Vector Regression

Support Vector Regression (SVR) is a method that modifies the standard OLS
so as to control how much error is acceptable in the fitted model. For that purpose,

52 Chapter 2. Literature Review

SVR minimizes the coefficients or, in fact, the `2-norm of the coefficient vector, while
constraining the absolute error to be less than or equal a predefined margin. SVR is
inspired in Support Vector Classifiers (SVC) and inherits some of its properties.

As detailed in Hastie, Tibshirani and Friedman (2008), first, assume a generic linear
regression model:

f(x) = xtβ + β0 (2.56)

The parameter β is estimated by minimizing:

H (β, β0) =
N∑
i=1

V (yi − f (xi)) + λ

2‖β‖
2 (2.57)

where:

Vε(r) =
 0 if |r| < ε

|r| − ε, otherwise
(2.58)

is an ε-insensitive error measure, ignoring errors of size less than ε.
If β̂ and β̂0 are the minimizers of H, the solution function can be show to have the

form (HASTIE; TIBSHIRANI; FRIEDMAN, 2008):

β̂ =
N∑
i=1

(α̂∗i − α̂i)xi (2.59)

f̂(x) =
N∑
i=1

(α̂∗i − α̂i) 〈x, xi〉+ β0 (2.60)

where 〈·, ·〉 is the canonical inner product and α̂i and α̂∗i are positive and solve the quadratic
programming problem:

min
αi,α∗i

ε
N∑
i=1

(α∗i + αi)−
N∑
i=1

yi (α∗i − αi) + 1
2

N∑
i,i′=1

(α∗i − αi) (α∗i′ − αi′) 〈xi, xi′〉 (2.61)

subject to the constraints:
0 ≤ αi, α

∗
i ≤ 1/λ∑N

i=1 (α∗i − αi) = 0
αiα

∗
i = 0

(2.62)

Due to the nature of these constraints, generally only a subset of the solutions (α̂∗i − α̂i)
are nonzero, and the associated data values are called the support vectors.

The regression analysis can also be written in terms of a set of basis functions
{hm(x)}, m = 1, 2, . . . ,M :

f(x) =
M∑
m=1

βmhm(x) + β0 (2.63)

To estimate β and β0, we minimize:

H (β, β0) =
N∑
i=1

V (yi − f (xi)) + λ

2
∑

β2
m (2.64)

2.6. Deep Learning 53

for some general error function V . The solution has the form:

f̂(x) =
N∑
i=1

âiK (x, xi) (2.65)

with:
K(x, y) =

M∑
m=1

hm(x)hm(y) (2.66)

2.6 Deep Learning

Deep learning is built around the hypothesis that a deep, highly hierarchical model
can be more efficient at representing some functions than a shallow one. Therefore, deep
learning encompasses several neural network architectures formed by multiple hidden
layers, in opposition to shallow networks. Until 2006, concerns regarding the obstacles
to train deep networks explained their lack of popularity despite their potential. Indeed,
Schmidhuber (2015) recollects that, back in the 1990s, deep feedforward or recurrent
networks were hard to train by backpropagation, the most popular learning algorithm
until then, the major reason being vanishing or exploding gradients during optimization,
which became known as the Fundamental Deep Learning Problem.

A breakthrough occurred promoted by the seminal paper by Hinton, Osindero and
Teh (2006), who showed that deep belief networks could be efficiently trained using a
strategy called greedy layer-wise pretraining. Over the years, additional alternatives to
overcome the Fundamental Deep Learning Problem were introduced, such as hessian-
free optimization algorithms and GPU-based computers, which have million times the
computation power of CPUs of the early 1990s (SCHMIDHUBER, 2015). Nowadays, these
advances ensured the dissemination of deep learning models in many areas of research and
in several practical applications.

Corroborating the idea that deep learning yields more powerful models due to the
existence of deep hierarchies, Eldan and Shamir (2016) mathematically demonstrate
that increasing the depth of neural networks is generally more effective than increasing
the number of neurons in the existing layers in terms of out-of-sample performance. As
illustration, they show that some classes of functions in Rd, expressible by a small 3-layer
feedforward neural network, cannot be approximated by any 2-layer network to more than
a predefined accuracy unless the number of neurons per layer grows exponentially in the
dimension d. The result is independent of the activation function.

The superiority of deep learning model over shallow networks is also supported by
other theoretical findings recently published. For instance, Delalleau and Bengio (2011)
present families of functions that can be represented much more efficiently (i.e with
fewer hidden units) via deep networks instead of shallow ones. Furthermore, Roux and
Bengio (2010) demonstrate that deep, but narrow generative networks do not require more
parameters than shallow ones to achieve universal approximation.

54 Chapter 2. Literature Review

2.6.1 Artificial Neural Networks

Prior to introducing advanced deep learning models, it is necessary to begin with
artificial neural networks, their cornerstone. Artificial neural networks (ANN), or simply
neural networks (NN), have become a widespread and highly flexible machine learning
model. According to Haykin (2004), a neural network is a massively parallel distributed
processor made up of simple processing units (neurons), which has a natural propensity
for storing experiential knowledge and making it available for use. In that sense, they
resemble the brain in two aspects:

1. Knowledge is obtained by the networks from its environment through a learning
process; and

2. Interneuron connection strengths, known as synaptic weights (or simply weights),
are used to store the acquired knowledge.

The aforementioned learning process, through which the network is capable of
extracting and extrapolating knowledge from observations, is called a learning algorithm.
This process is responsible for iteratively adjusting the synaptic weights so as to attain a
certain objective, such as minimizing a loss function that measures deviations of forecast
values from observed ones.

There is a wide availability of algorithms for this purpose, and they are broadly
classified in two groups: supervised and unsupervised. The first is comprised by algorithms
that require a dataset formed by mapped inputs and outputs such that the synaptic
weights are adjusted in order to minimize some loss function. The second group contains
algorithms that do not demand labeled outputs when optimizing synaptic weights. Other
variants of the learning paradigm are possible; for instance, semi-supervised learning uses
some examples including supervision targets, while the remaining do not (GOODFELLOW;
BENGIO; COURVILLE, 2016).

As emphasized by Haykin (2004), neural networks derive their computing power via
their highly parallel distributed structure and, seconds, their ability to learn and, hence,
generalize. Generalization relates to out-of-sample performance, in the sense that these
models present enough flexibility and power to yield decent predictions for inputs not
encountered during the learning (also known as training) phase. Naturally, when training
any neural network, the main objective must be to achieve a solid generalization power,
implying a low out-of-sample loss. Focusing solely on minimizing the in-sample loss may
induce overfitting.

The basic neuron model described above can be represented as a series of functional
transformations, according to Bishop (2006). Figure 3 displays a typical neuron. For
simplicity, assume that this unit receives n inputs given by x1, x2, . . . , xn. Mathematically,
the operation carried out by the neuron, which is denoted propagation, can be summarized as

2.6. Deep Learning 55

follows. Primarily, a linear combination z of the inputs is computed using the corresponding
weights wi to each input xi. Thus:

z = w0 +
n∑
i=1

wixi (2.67)

where w0 is a bias introduced for additional versatility (i.e. generalization power). This
linear combination is also known as activation. In a given network, the activation of each
neuron is inputted in the respective activation function f . The output of a neuron then
becomes:

y = f(z) (2.68)

This output is then transmitted forward to the neurons to which the neuron in question is
connected. The process is repeated until the final (output) layer of the network.

y...

w0

x1

xn

y := f(z)

Figure 3 – Single processing unit and its components. The activation function is denoted
by f and applied on the actual input z of the unit to form its output y = f(z).
x1, . . . , xn represent input from other units within the network; w0 is called
bias and represents an external input to the unit. All inputs are mapped onto
the actual input z using the propagation rule.

With respect to the activation function f , many choices are available in the literature.
Typically, the following functions are used with this purpose:

1. Threshold (Heaviside): it corresponds to a binary function, implying that, if the
input value is above a certain threshold (commonly 0), the neuron is activated and
sends a signal to the next layer independent of the input value:

f(x) =

1, if x > 0

0, if x ≤ 0
(2.69)

2. Linear: generates a signal proportional to the input. It suffers from two limitations.
First, since its derivative is always a constant, learning via backpropagation is not
feasible. Second, a neural network formed by layers of linear units is essentially a
regression model, for successive linear transformations across the layers is intrinsically
equivalent to a single linear layer, also establishing a linear relationship between
input and output. The function is given by:

f(x) = ax (2.70)

where a is a parameter.

56 Chapter 2. Literature Review

3. Sigmoid (or logistic): the popularity of this activation function is explained by
several factors. First, it is differentiable in every point of its domain. Second, the
function is monotonic and its gradient is smooth, preventing jumps in output values.
Also, outputs lie between 0 and 1 (see Equation 2.71), imposing a normalization
that is beneficial when predicting probabilities, for instance. However, there are
disadvantages, such as vanishing gradients for large |x|. The sigmoid function is
defined as:

f(x) = 1
1 + e−λx

(2.71)

where λ is a parameter.

4. Hyperbolic tangent: it is an adaptation of the sigmoid function that produces zero-
centered outputs in the range [−1, 1]. Additionally, its gradient is more steep, suffering
less intensively from the vanishing gradient problem. The hyperbolic tangent can be
written as:

f(x) = tanh x = ex − e−x

ex + e−x
(2.72)

However, in many contexts, there is no consensus regarding which activation function
performs better in terms of test error. As illustration, for stock market forecasting, Atsalakis
and Valavanis (2009) survey more than 100 related published articles that focus on neural
and neuro-fuzzy models for this purpose and conclude that there is no unanimity concerning
the best network architecture for this problem. Meanwhile, Sibi, Jones and Siddarth (2013)
demonstrate that the activation function chosen has a statistically significant impact on
the model performance.

In 2011, the seminal paper by Glorot, Bordes and Bengio (2011) proposed a new
activation function called rectifier linear unit, or ReLU, defined as:

ReLU(x) = max(0, x) (2.73)

This function was created by observing that, while logistic sigmoid neurons are more
biologically plausible than hyperbolic tangent neurons, the latter works better for training
multi-layer networks. In this aspect, rectifying neurons are an even better model of
biological neurons and yield equal or better performance than previous functions.

The rectifier activation function allows a network to effortlessly achieve sparse
representations due to the hard nonlinearity and nondifferentiability at zero. Even though
a hard saturation is imposed at this point, which may compromise optimization by blocking
gradient back-propagation, the experimental results offered by Glorot, Bordes and Bengio
(2011) suggest that this condition may actually help supervised training. The authors
hypothesize that the hard non-linearities do not threaten the model stability as long as
the gradient can propagate along some paths, i.e., that some of the hidden units in each
layer are non-zero.

2.6. Deep Learning 57

One disadvantage of the ReLU is that, due to the abrupt activation at 0, units
are deactivated when the input is negative, slowing the learning process. A solution is
presented by Maas, Hannun and Ng (2013), who introduced the Leaky ReLU,or LReLU,
which can be written as:

LReLU(x) =

x, if x > 0

0.01x, if x ≤ 0
(2.74)

As it is possible to infer, LReLU allows for a small, non-zero gradient when the unit is
saturated and not active (MAAS; HANNUN; NG, 2013). The factor 0.01 may be adjusted
as required.

Another alternative has been recently introduced by Klambauer et al. (2017). The
authors developed self-normalizing networks (SNN) to enable high-level abstract represen-
tations. In this sense, while batch normalization requires explicit normalization, neuron
activations in a SNN naturally converge towards zero mean and unit variance, even under
the presence of noise and perturbations. In particular, neurons possess a novel activation
function named scaled exponential linear units (SELU), which induces self-normalizing
properties. The SELU function is defined by:

SELU(x) = λ

x, if x > 0

αex − α, if x ≤ 0
(2.75)

where λ > 1 to ensure a slope greater than one for positive net inputs. Interesting properties
emerge from this formulation. Indeed, it may be shown that SELU fulfills the following
requirements for an activation function (KLAMBAUER et al., 2017):

1. Negative and positive values for controlling the mean;

2. Saturation regions (i.e. intervals where the derivative approaches zero) to dampen
the variance whenever it becomes large in the lower layer;

3. A slope greater than one to increase the variance whenever it becomes too small in
the lower layer; and

4. A continuous curve in its domain, ensuring the existence of fixed points.

2.6.2 Deep Multilayer Perceptron

The multilayer perceptron (MLP) is the most basic type of ANN. In its most vanilla
form, it is formed by an input layer, a hidden layer, and an output layer. Deep multilayer
perceptrons, depicted in Figure 4, present multiple hidden layers in sequence, adding more
flexibility and complexity to the network in exchange of greater generalization power. By
definition, these are feedforward networks, in the sense that they are acyclic, i.e. data flows
from the input layer toward the output layer without any kind of recurrence.

58 Chapter 2. Literature Review

x0

x1

...

xm

y
(1)
0

y
(1)
1

...

y
(1)
p(1)

. . .

. . .

. . . y
(L)
0

y
(L)
1

...

y
(L)
p(L)

y1

y2

...

yn

Input Layer
1st Hidden Layer pth Hidden Layer

Output Layer

Figure 4 – Network graph of a (L+ 1)-layer deep perceptron with m input units and n
output units. The lth hidden layer contains p(l) hidden units.

As demonstrated by Hornik, Stinchcombe and White (1989), under rather gen-
eral conditions, deep feedforward networks can universally approximate any measurable
function with a predefined accuracy. This result is called Universal Approximation Theo-
rem (HAYKIN, 2004), and analogous versions are available for other kinds of networks.
Therefore, MLPs are powerful models for a wide collection of prediction problems.

MLPs and other networks are commonly trained via backpropagation, one of the
most important learning algorithms in the field, since it is effective on its own and it is the
basis for more advanced ones. Essentially, it can be seen as a generalization of the OLS.
Indeed, assume that, in the training sample, the error of the output node j in the n-th
data point is:

ej(n) = dj(n)− yj(n) (2.76)

where dj(n) is the observed value and yj(n) is the target value. In addition, it is assumed
a quadratic loss function L(n) of the form:

L(n) = 1
2
∑
j

e2
j(n) (2.77)

By gradient descent, the change in each weight so as to minimize L is:

∆wji(n) = −η ∂L(n)
∂zj(n)yi(n) (2.78)

where yi is the output of the previous neuron i of the preceding layer and η is the predefined
learning rate.

The derivative of the previous equation depends on the activation zj(n). It is possible
to prove that:

∂L(n)
∂zj(n) = ej(n)f ′(zj(n)) (2.79)

2.6. Deep Learning 59

where f is the activation function and f ′, its derivative. For hidden nodes, the result above
becomes:

∂L(n)
∂zj(n) = −f ′(zj(n))

∑
k

∂L(n)
∂zk(n)wkj(n) (2.80)

Since it depends on gradient descent, there is no guarantee that backpropagation will
be able to find the global minimum of the error function. Indeed, the loss functions of
neural networks are highly non-convex due to the intrinsic nonlinearities of such models,
generating functions with multiple local minima.

2.6.3 Deep Autoencoder

An autoencoder is a neural network that is trained to attempt to copy its input to
its output (GOODFELLOW; BENGIO; COURVILLE, 2016). According to Vincent et
al. (2010), the concept behind autoencoders can be evolved from the idea of transforming
and retaining information about the inputs of a neural network. More formally, we are
interested in learning a possibly stochastic mapping from input X to a novel representation
Y . Mathematically, one wants to find the vector of parameters θ that defines the mapping:

q(Y |X; θ) = q(Y |X) (2.81)

Naturally, a reasonable criterion that any good mapping must meet, at least to some
degree, is to retain a significant amount of information about the input. As formulated
by Vincent et al. (2010), this problem can be expressed in information-theoretic terms as
maximizing the mutual information I(X, Y) between an input random variable X and its
higher level of representation Y . This is called infomax principle. This mutual information
can be decomposed as:

I(X, Y) = H(X)−H(X|Y) (2.82)

where H is the information entropy. Since the observed input X comes from an unknown
distribution q(X) on which θ has no influence, the infomax principle for this function can
be simply written as:

arg max
θ
I(X, Y) = arg max

θ
−H(X|Y) = arg max

θ
Eq(X,Y)[ln q(X|Y)] (2.83)

Now, for any distribution p(X|Y), we have (VINCENT et al., 2010):

Eq(X,Y)[ln p(X | Y)] ≤ Eq(X,Y)[ln q(X | Y)]︸ ︷︷ ︸
−H(X|Y)

(2.84)

Moving on, considering a parametric distribution p(X|Y ; θ′), parameterized by θ′,
and the following optimization:

max
θ,θ′

Eq(X,Y ;θ) [ln p (X | Y ; θ′)] (2.85)

60 Chapter 2. Literature Review

According to Equation 2.84, this problem is equivalent to maximizing a lower bound
on−H(X|Y) and, thus, on the mutual information. Furthermore, if an additional constraint
is incorporated so as to restrict ourselves to a deterministic mapping from X to Y , meaning
that a representation Y is to be computed by a function Y = fθ(X) parameterized on θ,
which corresponds to setting:

q(Y |X; θ) = δ (Y − fθ(X)) (2.86)

where δ denotes the Dirac’s delta function, then the optimization can be expressed as:

max
θ,θ′

Eq(X) [ln p (X | Y = fθ(X); θ′)] (2.87)

once again corresponding to maximizing a lower bound on the mutual information (VIN-
CENT et al., 2010).

With the development presented so far, it is possible to build the reconstruction
error criterion used to train autoencoders. Indeed, since q(X) is unknown, but may be
sampled from it, the empirical average over the training samples can be used instead as
an unbiased estimated, which implies replacing Eq(X) by Eq0(X):

max
θ,θ′

Eq0(X) [ln p (X | Y = fθ(X); θ′)] (2.88)

Building on this development, training an autoencoder to minimize reconstruction
error amounts to maximizing a lower bound on the mutual information between input
X and learnt representation Y (VINCENT et al., 2010). The traditional autoencoder is
depicted on Figure 5, where it is possible to see that the network has two elements: (1)
the encoder, which compresses the input and reduces its dimension; and (2) the decoder,
which is responsible for decoding the compressed data and generate outputs as close as
possible to the input data.

x1Input #1

x2Input #2

x3Input #3

x4Input #4

y1 Output #1

y2 Output #2

y3 Output #3

y4 Output #4

Figure 5 – Representation of an autoencoder with a single hidden layer. The blue circles
denote the nodes where the encoding process occurs. The red nodes decompress
the encoded data, generating outputs approximating the inputs inserted in the
green nodes.

Using the prior formulas, the encoder is a deterministic mapping fθ that transforms
an input vector x into a hidden representation:

y = fθ(x) = s(Wx + b) (2.89)

2.6. Deep Learning 61

with parameter set θ = {W,b} and activation function s.
The resulting hidden representation is then converted back into a reconstructed

vector z in the input space, z = gθ′(y). This mapping is called the decoder, which is
mathematically expressed as:

gθ′(y) = s(W′y + b′) (2.90)

with parameter set θ′ = {W′,b′} and activation function s.
As argued by Vincent et al. (2010), z is not to be regarded as an exact reproduction of

x, but rather in probabilistic terms as the parameters (typically the mean) of a distribution
p(X|Z = z) that may generate with high likelihood. Therefore, the reconstruction error to
be optimized is:

L(x, z) ∝ − ln p(x|z) (2.91)

Common choices for p include the normal distribution, when dealing with continuous
variables, yielding a quadratic loss function, and the Bernoulli distribution for binary
variables, producing the cross-entropy loss.

Some common extensions of autoencoders include:

1. Sparse autoencoders, which simply modifies the training criterion by adding a
sparsity penalty Ω(h) on the code layer h, in addition to the reconstruction error
(GOODFELLOW; BENGIO; COURVILLE, 2016). Therefore, the optimization
criterion is based on the minimization of a loss function of the form:

L(x, g(f(x))) + Ω(h) (2.92)

2. Denoising autoencoders: as detailed by Goodfellow, Bengio and Courville (2016),
rather than adding a penalty Ω to the cost function, a denoising autoencoder learns
by minimizing a loss function that involves a corrupted copy x̃ of x that has been
altered by some form of noise. Therefore, a denoising autoencoder must undo this
corruption rather than simply copying their input. The advantage, as contended
and shown by Lu et al. (2017), is that, along with the ability of handling noise, the
autoencoder gains greater capacity of learning properties of the generative process
responsible for the input data.

Applications of autoencoders in real-world problems are varied. These networks have
been successfully trained to implement dimensionality reduction and information retrieval,
which is the task of finding entries in a database that resemble a query entry (GOODFEL-
LOW; BENGIO; COURVILLE, 2016). In particular, lower-dimensional representation can
enhance performance on many tasks, and Bengio, Courville and Vincent (2013) assert that
the machine learning algorithms are heavily influenced by the data representation method.

According to Wang, Yao and Zhao (2016), the use of autoencoders in experiments
with real and simulated data corroborates their dimension reduction ability for datasets

62 Chapter 2. Literature Review

Figure 6 – Prototypes of (a) a conventional autoencoder and (b) a denoising autoencoder.
Source: Dong et al. (2018).

comprised by time series. Furthermore, the authors observe not only the effectiveness
of autoencoders in this task, but also its potential to unveil nontrivial patterns in the
data. In this aspect, they outperform traditional techniques, such as PCA, LDA (Linear
Discriminant Analysis), LLE (Locally Linear Embedding) and Isomap (WANG; YAO;
ZHAO, 2016).

2.6.4 Convolutional Neural Networks

Convolutional Neural Networks, or CNNs, are a specialized kind of neural network
for processing data that has a known, grid-like topology (GOODFELLOW; BENGIO;
COURVILLE, 2016). Examples include time series, which can be interpreted as a 1D grid
taking samples at regular time intervals, and image data, which can be regarded as a 2D
grid of pixels. The name given to these networks is explained by the use of convolution
operations in some of their layers.

Mathematically, the convolution of two functions f and g over an infinite range is:

s(t) = (x ∗ w) (t) ≡
∫ ∞
−∞

x(v)w(t− v)dv (2.93)

assuming the integral of the previous equation is defined. Following the terminology
commonly referred to, the first argument, x, is denominated input, while the second
argument, w, is known as kernel (GOODFELLOW; BENGIO; COURVILLE, 2016). The
output, s, is sometimes called feature map. In discrete time, for univariate functions, the

2.6. Deep Learning 63

convolution is defined as:

s(t) = (x ∗ w)(t) =
∞∑

v=−∞
x(v)w(t− v) (2.94)

This expression can be readily extended for multivariate functions. In practice, for machine
learning applications, the input is typically a tensor of data, while the kernel is a multi-
dimensional array of parameters optimized by the learning algorithm. The convolution
transformation for matrices is outlined in Figure 7, while the mapping is shown in Figure 8.



0 1 1 1x1 0x0 0x1 0
0 0 1 1x0 1x1 0x0 0
0 0 0 1x1 1x0 1x1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0


∗

 1 0 1
0 1 0
1 0 1

 =


1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0



Figure 7 – Example of convolution between two matrices, as frequently carried out by
machine learning models.

Even though common matrix multiplication is replaced by convolutions in CNNs,
these models also belong to the class of feedforward networks, for, as emphasized by Rawat
and Wang (2017), the information flow tales place in a single direction only, from the
inputs to the outputs of the network. The architecture underpinning CNNs is motivated by
the visual cortex in the brain, which consists of alternating layers of simple and complex
cells (RAWAT; WANG, 2017). Therefore, concerning data flow, CNNs operate like a fully
connected neural network such as MLP.

Goodfellow, Bengio and Courville (2016) highlights that CNNs leverage three im-
portant features that can help improve a machine learning system: sparse interactions

Input image
or input feature map Output feature maps

Figure 8 – Illustration of a single convolutional layer. If layer l is a convolutional layer,
the input image (if l = 1) or a feature map of the previous layer is convolved
by different filters to yield the output feature maps of layer l.

64 Chapter 2. Literature Review

(or sparse weights), parameter sharing, and equivalent representations. The first feature
of CNNs, the sparse interactions, are accomplished by making the kernel smaller than
the input. The implication is that fewer parameters have to be stored, reducing mem-
ory requirements, improving statistical efficiency, and computing the output with less
mathematical operations.

Parameter sharing is related to the use of kernels to process the inputs. It refers
to using the same parameter for more than one function in the model. In that case, the
kernel is the same for every position of the inputs. Hence, instead of learning a set of
parameters for every location, a single set is learned and applied to every input. Not only
this design induces computational efficiency, but it also leads to statistical gains and is
more consistent with the nature of some problems tackled with neural networks.

Furthermore, parameter sharing creates another interesting feature, equivariance to
translation. Formally, a function f(x) is equivariant to a function g(x) if f(g(x)) = g(f(x)).
Convolutions are equivariant to any function that translates (i.e. shifts) the input. As
shown by Goodfellow, Bengio and Courville (2016), for inputs represented by time series, if
we move an event later in time in the input, the exact same representation of it will appear
in the input, just shifted in time. With respect to other possible transformations, such
as rotation or scale changes, convolution is not naturally equivariant, requiring specific
architectures for handling these types of transformations.

Besides the existence of convolutional layers, pooling (subsampling) layers are also
frequent. Indeed, standard CNN generally consists of two types of layers: the convolutional
layer, in which the convolution operation is applied, and the pooling layer, where the
number of parameters and the spatial size of the representation are reduced (SEZER;
OZBAYOGLU, 2018). Typically, in the last subsampling layer, the data becomes a one-
dimensional vector and is inputted to fully connected networks such as MLPs. Dhillon
and Verma (2020) offers a more general view, identifying convolutional, pooling, fully
connected, and normalization layers in an extended CNN. Figure 9 portrays a typical
convolutional network. A review of modern CNN architectures is provided by Dhillon and
Verma (2020).

Although many architectures are available in the literature, Goodfellow, Bengio and
Courville (2016) highlight that a CNN typically carries out three set of operations:

1. First stage: the layer receives the input and performs several convolutions in parallel
to produce a set of linear activations. CNNs are flexible enough to work with inputs
of variable size;

2. Second stage (or detector stage): each linear activation is run through a nonlinear
activation function;

3. Third stage: a pooling function is used to modify the output of the layer so as to
make it usable for the next layer.

2.6. Deep Learning 65

Input Layer Convolutional Layer Subsampling Layer Convolutional Layer

Subsampling Layer Flatten Layer Fully Connected Network

Figure 9 – General representation of a convolutional neural network. The yellow rectangle
represents the kernel.

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

Figure 10 – Stacked CNNs and representation of the pooling function.

CNNs have been successfully applied to image processing; see Bai, Tang and An
(2019) and Yamashita et al. (2018). Visual object recognition has also seen interesting
applications involving CNNs, as shown by LeCun et al. (2010). Meanwhile, Zhao et al.
(2017) develop a time-series classification system based on CNNs.

2.6.5 Recurring Neural Networks

Arising from the ideas developed by Rumelhart, Hinton and Williams (1986), Recur-
rent Neural Networks (RNN) form another set of promising deep learning algorithms in
terms of their ability to cope with temporal dependency in data. As claimed by Hüsken and
Stagge (2003), RNNs are dynamical systems that efficiently use the temporal information
in the input sequence, both for classification as well as for prediction. This feature is

66 Chapter 2. Literature Review

useful in many contexts, from text interpretation to time series modeling. Its prominence
is also explained by the Universal Approximation Theorem, since it is also possible to
show that RNN share a similar property with deep feedforward networks: they are able
to approximate almost any recurrent system of equations, under very general conditions
(GOODFELLOW; BENGIO; COURVILLE, 2016; SCHÄFER; ZIMMERMAN, 2007).

Briefly, RNNs are a family of neural networks for processing sequential data, extending
traditional feedforward networks by preserving their temporal dimension (GOODFELLOW;
BENGIO; COURVILLE, 2016; ESSIEN; GIANNETTI, 2019). In terms of architecture,
RNNs are models that capture temporal dependencies using cycles in their computational
graph, as shown in Figure 11. One of the main advantages of this strategy is that parameters
are shared across multiple parts of the model. As observed by Goodfellow, Bengio and
Courville (2016), this behavior increases the generalization ability and makes it possible
to employ the same model for different types of data, with distinct formats (lengths, for
instance).

f f f f=g

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
Figure 11 – Example of a RNN with no output. The RNN simply receives the input

xt and incorporates into the state ht that is passed forward through time.
On the right, the same network seen as an unfolded computational graph
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Essentially, in Figure 11, the mathematical operation carried out by the RNN can
be summarized as:

ht = g(xt, xt−1, . . . , x2, x1) = f(ht−1, xt) (2.95)

where ht is the state passed forward through time, xt are the temporal inputs, and f and
g are equivalent functional representations of the recurrence implemented by the RNN.

Applications of RNN are offered, for instance, by Zhang, Wu and Chang (2018), who
employ these networks in the domain of short-term load forecasting. Besides, Hsieh, Hsiao
and Yeh (2011) demonstrate that RNNs may be coupled with wavelets for stock market
forecasting.

2.6. Deep Learning 67

2.6.6 Long Short-Term Memory (LSTM) Networks

Even though RNNs are promising for time series modeling, it is frequently observed
that such networks are daunting to train and unable to detect and reproduce long-
term autocorrelations. This drawback is explained by the vanishing gradient problem
(PALANGI; WARD; DENG, 2016; SHEN et al., 2018), arising when neural networks
are trained using gradient-based learning methods. Such condition prevents weights from
changing and adapting in face of serially correlated data with polynomial decay, decreasing
their statistical power. Even though this limitation may be attenuated using more flexible
activation functions, such as ReLU (GLOROT; BORDES; BENGIO, 2011), more efficient
solutions must be implemented to fully address this issue.

As stated by Schmidhuber (2015), experiments suggest that vanishing or exploding
gradients are common both in deep feedforward networks and RNNs. Indeed, with cumu-
lative backpropagated error, gradients either shrink rapidly or grow exponentially. In a
RNN, this issue seems more pervasive due to the recurrences appearing in the network.
As an example, assuming a simple recurrence of the form:

xn = Wtxn−1 (2.96)

The general term may be written as a function of the initial value x0 as:

xn = (Wt)nx0 (2.97)

and if W admits an eigendecomposition of the form:

W = ADAt (2.98)

with orthogonal A, then the recurrence becomes:

xn = At(Dt)nAx0 (2.99)

In the expression above, as n → +∞, eigenvalues with absolute value above 1 explode,
whereas the remaining decay exponentially to zero. This simplified dynamic system is
useful to explain the origin of the vanishing and exploding gradients in RNNs.

With the purpose of overcome the limitations of traditional RNNs, different archi-
tectures have been advanced in the literature. For instance, according to Goodfellow,
Bengio and Courville (2016), one of the most effective sequence models used in practical
applications are called gated RNNs. These models are based on the idea of creating paths
through time that have derivatives that neither vanish nor explode. The connection weights
between gated RNNs are adjusted at each time step.

The main advantage of these networks is their ability to accumulate information over
a long duration. In many fields, this property is desirable. For instance, in text processing,
the meaning of a word depends on the position in which it occurs in the sentence, and on

68 Chapter 2. Literature Review

previous and upcoming words. Time series modeling presents the same challenges, since
forecasting requires processing and extracting features of past observations due to the
existence of autocorrelations.

As an illustration, Shen et al. (2018) provide an application of gated recurrent unit
(GRU) networks for predicting trading signals for stock indices. Experiments show that
these models outperform SVMs and other benchmarks in terms of prediction accuracy.
At the same time, Niu et al. (2020) develop a modified GRU network with a feature
selection mechanism for wind power forecasting, obtaining superior results in comparison
to traditional benchmarks.

In that context, Long Short-Term Memory (LSTM) networks are another alternative.
They are a particularization of RNNs, distinguishing themselves by the versatility in
learning long-term serial correlations. Such improvements arise from gates added to the
architecture that increase the remembering capacity of the network. LSTM networks were
introduced in the seminal work of Hochreiter and Schmidhuber (1997) and later refined
by several authors; see Gers, Schmidhuber and Cummins (2000), Gers and Schmidhuber
(2001), Zhou et al. (2016), among others.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

htHidden

ft

it
C̃t

ot

Figure 12 – Basic structure of a LSTM network with a forget gate. Inspired by Fischer
and Krauss (2018).

A full description of the operations carried out by a LSTM network with forget gate
can be found in the papers by Essien and Giannetti (2019), Yu et al. (2019), and Cao, Li
and Li (2019). Briefly, according to the data flow sketched in Figure 12, the LSTM works
as follows. Initially, there is a decision about discarding past data, represented by ct−1,
which is mathematically determined by the forget function ft, as it will become clearer
later. The function ft is computed using a sigmoid transformation of hidden and input
values such that:

ft = σ(wf · [ht−1, xt] + bf) (2.100)

2.6. Deep Learning 69

where wf are synaptic weights associated with the forget gate and:

σ(x) = 1
1 + e−x

(2.101)

In the next stage, new information is generated to be incorporated in the cell state
ct. There are two intermediate steps with the aim of establishing how much information is
going to be added, requiring the evaluation of the following expressions:

it = σ(wi · [ht−1, xt] + bi) (2.102)

c̃t = tanh(wc · [ht−1, xt] + bc) (2.103)

where wi and wc are the synaptic weights associated with the input and the current data.
Using these expressions, it is possible to update the previous cell state, ct−1, by combining
past and current data:

ct = ft ◦ ct−1 + it ◦ c̃t (2.104)

where ◦ denotes the Hadamard product. As one may infer from this equation, ft and it
weigh past and current data, respectively, to update the cell state.

The value of the output gate of the LSTM cell is then a scaled and filtered transfor-
mation of the inputs and the hidden state given by:

ot = σ(wo · [ht−1, xt] + bo) (2.105)

and the hidden state provided to the next cell of the network is:

ht = ot · tanh(ct) (2.106)

An extension of this model is provided by Gers, Schmidhuber and Cummins (2000),
who proposed peephole connections that allow to take into consideration past and current
cell states when estimating the weights it and ft and the output ot. The mathematical
formulation is given by the following system of equations:

ft = σ(wf · [ht−1, xt] + Pf · ct−1 + bf) (2.107)

it = σ(wi · [ht−1, xt] + Pi · ct−1 + bi) (2.108)

c̃t = tanh(wc · [ht−1, xt] + Pc · ct−1 + bc) (2.109)

ct = ft ◦ ct−1 + it ◦ c̃t (2.110)

ot = σ(wo · [ht−1, xt] + Po · ct + bo) (2.111)

70 Chapter 2. Literature Review

ht = ot · tanh(ct) (2.112)

where Pf , Pi and Po are the peephole weights for the forget gate, input gate, and output
gate, respectively.

The solid mathematical foundation and the promising results displayed by LSTM
networks in multiple situations are not the only reasons for its widespread use in the
literature. O’Reilly and Frank (2006) provide biological justifications to explain the success
of these networks, relating the learning mechanisms found in LSTM and similar networks
to those present in the prefrontal human cortex.

Lately, diverse applications of LSTM networks have emerged in the pertaining
literature. For instance, Messina and Louradour (2015) demonstrate the use of LSTM
networks for analysis and comprehension of handwritten sentence. In the field of speech
recognition, Li and Wu (2015) and Cai and Liu (2016) offer potential uses, while Fischer
and Krauss (2018) and Kim and Won (2018) employ LSTM networks for time series
modeling. Another application involves text classification, as shown by Liu and Guo (2019).
Greff et al. (2017) provide further examples.

Finally, the thorough investigation executed by Jozefowicz, Zaremba and Sutskever
(2015) is noteworthy. These researchers scrutinized the literature, examining over 10,000
different RNN architectures, and identified solely three that could outperform LSTM
and GRU in the experiments designed. Even so, the increased performance is not consis-
tent throughout all experimental conditions, implying that these two architectures are
competitive against existing alternatives.

2.7 Machine Learning and Inflation Forecasting

Despite the success of machine learning in many fields of research, the literature
review carried out shows that applications in Economics have been somewhat neglected.
Indisputably, there is an exception, Finance, for which many applications have been
conceived in the past years. However, in Macroeconomics, to which the problem of inflation
forecasting belongs, fewer empirical studies have been found, regardless of the fact that
machine learning applications in Econometrics are fruitful.

An important exception is Medeiros et al. (2019), which were among the first authors
to thoroughly survey machine learning models for multi-period inflation forecasting,
investigating each one and comparing them in terms of out-of-sample performance. Until
then, most authors had focused exclusively on few, simple models, without a thorough
comparison between then. For instance, McAdam and McNelis (2005) apply linear and
neural network-based “thick” models for forecasting inflation based on Phillips-curve
formulations in the US, Japan, and Euro area, concluding that specifications based on
thick networks can be competitive against the linear specification.

2.7. Machine Learning and Inflation Forecasting 71

In a similar fashion, Choudhary and Haider (2012) test ANN models against AR(1)
for monthly inflation rates for 28 OECD countries, verifying that ANN models were
superior predictors for 45% of the countries of sample, while AR(1) outperformed only in
23%. Combinations of the neural network models also delivered promising results.

Meanwhile, Garcia, Medeiros and Vasconcelos (2017) analyze high-dimensional
econometric models, such as shrinkage and complete subset regression, in the context
of inflation forecasting in Brazil. The authors obtain compelling results, and conclude
that combining forecasts based on model confidence sets can achieve superior predictive
performances.

In the case of Medeiros et al. (2019), the authors empirically tested the following
approaches using US macroeconomic data to forecast the US CPI:

1. Shrinkage estimators: Ridge regression, LASSO regression, adaLASSO, and elastic
net;

2. Factor models: target factors, and factor boosting;

3. Ensemble methods: bagging, complete subset regressions (CSR), and jackknife model
averaging (JMA);

4. Random Forests;

5. Hybrid linear-Random Forest models: mixture of Random Forests and ordinary least
squares (OLS), and also a combination of RF and adaLASSO; and

6. Other nonlinear models: boosted regression tree, deep neural networks (multi-layered
perceptron), polynomial models, and linear models with non-concave penalties.

The performance of each model was checked against three benchmarks: (1) random
walk; (2) autoregressive model of order p, or AR(p), where p is determined by the Bayesian
Information Criterion (BIC); and (3) unobserved components stochastic volatility (UCSV)
models. These benchmarks are comprised by somewhat naive econometric tools that are
associated with a linear Phillips Curve and remain popular for forecasting inflation. Their
adamant popularity is explained by the difficult to surpass the (weak) performance of
these models; see Stock and Watson (1999) and Stock and Watson (2007).

Medeiros et al. (2019) conclude that LASSO, Random Forests and others are able to
generate more accurate forecasts than the standard benchmarks, corroborating the benefits
of machine learning methods and big data for macroeconomic forecasting. Indeed, the gains
are consistent and as large as 30% in terms of mean squared errors. In particular, Random
Forests produce the smallest errors and exhibit greater robustness. They also display
remarkable stability across different horizons, delivering compelling results in periods of
economic expansion and recession as well as in moments of low and high uncertainty. The

72 Chapter 2. Literature Review

superiority is also verified in multiple subsamples of the data collected and is robust in
real-time experiments.

73

3 A DEEP LEARNING MODEL FOR INFLATION FORE-

CASTING
This chapter is devoted to the presentation of a novel deep learning model designed

for inflation forecasting. With that aim, the theoretical background required for full
comprehension is discussed, focusing on convolutional LSTM networks and variational
autoencoders. Subsequently, the combination of these techniques and the computational
implementation are explored.

3.1 Theoretical Background

Recently, several empirical papers have reported encouraging results regarding the
use of deep learning techniques in problems involving time series forecasting. This success
is explained mainly by the fact that neural networks, as universal approximators in
many situations, are capable of capturing and dealing with nonlinearities, enhancing their
flexibility. Some studies illustrating the power and versatility of those models are compiled
in Table 1. The interested reader may find exhaustive surveys on the subject in the papers
by Ahmed et al. (2010), Atsalakis and Valavanis (2009), Längkvist, Karlsson and Loutfi
(2017), and Liu et al. (2017).

Table 1 – Empirical papers on applications of deep learning techniques for time series
forecasting.

Authors Model Application
Adamowski (2008) MLP Water demand
Galeshchuk (2016) MLP Exchange rates

Kim and Won (2018) LSTM + GARCH Stock index volatility
Kim et al. (2004) ANN Non-stationary time series
Shi et al. (2015) ConvLSTM Rainfall

Wang, Qi and Liu (2019) ConvLSTM Energy generation

Motivated by these results, a deep learning model for inflation forecasting will be
developed in this section. The central idea is to build on the adaptability and robustness
of LSTM networks in capturing temporal dependencies to formulate a model that is
well-suited to address the nonlinearities observed in inflation time series. Simultaneously,
convolutional networks are added to take advantage of hierarchical patterns that may
exist in data, together with autoencoders for dimension reduction. Figure 13 depicts the
flowchart of the forecasting process. The core references that inspired the development of
this model are Bao, Yue and Rao (2017), Essien and Giannetti (2019), Shi et al. (2015) and
Wang, Qi and Liu (2019). In these studies, the authors have implemented models combining

74 Chapter 3. A Deep Learning Model for Inflation Forecasting

LSTM and convolutional networks, obtaining positive results in terms of out-of-sample
performance when compared to simpler, more conventional models.

Input Data Variational
Autoencoder

Encoded
Data ConvLSTM Inflation

Forecast

Figure 13 – Flowchart exhibiting the proposed forecasting process.

Briefly, the model developed herein is represented by a convolutional LSTM network
whose inputs are provided by the encoding layer of a variational autoencoder. As of the
date of publication of this dissertation, to our knowledge, no paper has investigated and
applied convolutional LSTM networks and variational autoencoders together to forecast
macroeconomic variables. Evidently, many papers study these techniques individually or
coupled with other networks. However, due to the fact that these networks have only been
recently introduced in the literature, there is an opportunity to examine their interaction
in the context of time series forecasting. Consequently, it is reasonable to claim that a
contribution to the literature is the assessment of the performance of this combination.

3.1.1 Variational Autoencoders

In the architecture proposed, the variational autoencoder (VAE) serves to reduce
the dimension of the input data, since the dataset provided by McCracken and Ng (2016),
which is employed to fit the ConvLSTM model, contains several, highly correlated time
series, implying that some redundancy is expected. As an illustration of the relevance of
dimension reduction, in a real time forecasting exercise, Boivin and Ng (2006) find that
factors extracted from as few as 40 pre-screened series often yield satisfactory or even
better results than using all the 147 series available in that occasion. Besides, weighting
the data based on their properties when conceiving the factors also lead to more accurate
forecasts, and VAEs have been successfully applied to transform, encode, and extract
features from time series, as shown by Pereira and Silveira (2018), among others.

Therefore, the architecture begins with a variational autoencoder acting analogously
to a nonlinear PCA, mixing the original series and producing a smaller dataset that can
be used to model and forecast inflation. The comparison is justified by the fact that,
similarly to the conventional PCA, autoencoders allow to extract principal components
by encoding data for later decoding with the intent of replicating the original data. The
nonlinear aspect stems from the fact that, unlike PCA, the components found are not
linearly uncorrelated. Such feature is not a drawback, for neural networks are designed to
handle and learn from these nonlinearities.

With respect to the mathematical formulation of variational autoencoders, following
Doersch (2016), the foundations of VAEs has actually little to do with classical autoencoders

3.1. Theoretical Background 75

such as sparse or denoising ones. The name is justified by the fact that the encoding-
decoding structure is also available here, resembling a traditional autoencoder. However,
unlike former versions, commonly no tuning parameter analogous to sparsity penalties is
incorporated. In addition, contrasting with sparse and denoising autoencoders, samples can
be generated without performing MCMC. Even though they share these encoding-decoding
abilities with other versions of autoenconders, they are more closely related to generative
networks. In fact, they can be regarded as one of the first generative networks introduced
in the pertaining literature.

Essentially, a VAE learns stochastic mappings between an observed dataset X, whose
distribution is complicated and unknown, and a latent set of variables z whose distribution
is simple and, therefore, from which samples may be generated (KINGMA; WEILLING,
2019). Formally, it is assumed that the generative model of a given dataset X depends on a
vector of latent variables z in a high-dimensional space Z obeying some probability density
function p(z) defined over Z. Next, assume there is a family of deterministic functions
f(z; θ) parameterized by a vector θ ∈ Θ such that f : Z × Θ → X . The problem is to
optimize θ such that, by sampling z from p(z), with high probability, f(z; θ) will generate
samples from the population of X. As put by Doersch (2016), we are aiming to maximize
the probability of each X in the training set under the entire generative process, according
to:

p(X) =
∫
p(X|z; θ)p(z)dz (3.1)

where f(z; θ) has been replaced by p(X|z; θ) to allow the use of the law of total probability.
In Bayesian Statistics, p(z) is known as the prior distribution over the latent space.

In this framework, variational autoencoders can be trained to generate the desired
samples, as shown in Goodfellow, Bengio and Courville (2016). With this purpose, the VAE
initially draws a sample z from the distribution p(z), which is run through a differentiable
generator network f(z; θ). Comparing with the previous equation, f may be seem as a
mapping that determines how z and p(X|z; θ) are connected, where θ represents here
the parameters of the generator network. Finally, X is sampled from a distribution
p(X; f(z)) = p(X|z), where θ is omitted for simplicity. Nevertheless, during training, the
approximate inference network (or encoder) q(z|X) is used to obtain z and p(X|z) is then
viewed as a decoder network. Note that q(z|X) approximates the true, but intractable
posterior of the generative model; see Kingma and Weilling (2019).

Regarding the choice of p(X|z), Gaussian distributions are often used, i.e.:

p(X|z) = N(X|f(z; θ)) (3.2)

where N(µ,Σ) denotes a multivariate normal distribution with mean µ and covariance
matrix Σ. As contended by Doersch (2016), the Gaussian distribution allows the use
of gradient descent (or any other optimization technique) to increase p(X) by forcing
f(z; θ) to approach X for some z, i.e., progressively rendering the training data more likely

76 Chapter 3. A Deep Learning Model for Inflation Forecasting

under the generative model. Naturally, other distributions are feasible, as long as they are
continuous in θ.

For illustration, Figure 14 outlines the general architecture of a variational autoen-
coder. Notoriously, VAEs distinguish themselves by the generative (sampling) procedure
that occurs immediately after the inputs are encoded. Comparing with Equation 3.2, we
see that the effect is that the encoded data is the input of f(z; θ), which is itself a neural
network dedicated for the estimation of the parameter θ. For a Gaussian, θ is simply the
mean µ and the covariance matrix Σ of the distribution.

m

s

Sampling

Encoder Decoder

Input

Encoded Data

Decoded Data

Figure 14 – Representation of a variational autoencoder. In the sampling stage, µ and σ
denoted the mean and standard deviation estimated from the encoded data,
respectively.

As shown by Goodfellow, Bengio and Courville (2016), VAEs are trained by maxi-
mizing the variational lower bound L associated with data point x:

L(q) = Ez∼q(z|X) [ln p(z,X)] +H(q(z|x)) (3.3)

In this expression, the first term is the joint log-likelihood of the visible and hidden
variables under the approximate posterior over the latent variables. Meanwhile, H is the
entropy of the approximate posterior. In practice, the effect of the entropy is that it
stimulates the variational posterior to place high probability mass on many z values that
could have generated x, rather than collapsing to a single point estimate of the most likely
value.

Manipulating Equation 3.3, we may write:

L(q) = Ez∼q(z|X) ln p(X|z)−DKL(q(z|X)||p(z)) ≤ ln p(x) (3.4)

where DKL is the Kullback-Leibler (KL) distance, also known as relative entropy. For any
distributions P and Q of a continuous random variable, DKL is defined to be the integral:

DKL(P ||Q) =
∫ ∞
−∞

p(x) ln
(
p(x)
q(x)

)
dx (3.5)

3.1. Theoretical Background 77

where p and q denote the probability densities of P and Q, respectively. More generally, if
P and Q are taken to be probability measures over a set X , and P is absolutely continuous
with respect to Q, then:

DKL(P ||Q) =
∫
X

ln
(
dP

dQ

)
dP (3.6)

where dP/dQ is the Radon-Nikodym derivative of P with respect to Q. Equation 3.4 shows
that L(q) is the sum of the log-likelihood with the KL distance between the posterior and
the model prior. Inference and learning can be carried out using traditional gradient-based
optimization algorithms; see Kingma and Weilling (2019).

3.1.2 Convolutional LSTM Networks

The next step involves the convolutional LSTM (ConvLSTM henceforth) network,
which is the core of the forecasting process. The choice for this extension over the traditional
LSTM network is justified by the fact that, although the latter has proven powerful for
handling temporal serial correlation, it contains too much redundancy for spatial data, as
asserted by Shi et al. (2015), who are credited for the development of ConvLSTM. This
drawback is addressed by adding convolutional structures in the input-to-state and the
state-to-state transitions. Therefore, the input and recurrent transformations are both
convolutional in a ConvLSTM layer.

Mathematically, a ConvLSTM network can be formulated as:

it = σ(wxi ∗ xt + whi ∗ ht−1 + wci ◦ ct−1 + bi) (3.7)

ft = σ(wxf ∗ xt + whf ∗ ht−1 + wcf ◦ ct−1 + bf) (3.8)

ot = σ(wxo ∗ xt + who ∗ ht−1 + wco ◦ ct−1 + bo) (3.9)

c̃t = tanh(wxc ∗ xt + whc ∗ ht−1 + bc) (3.10)

ct = ft ◦ ct−1 + it ◦ c̃t (3.11)

ht = ot ◦ tanh(ct) (3.12)

where σ is the sigmoid function, and wxi, wxf , wxo, wxc, whi, whf , who and whc are 2D
convolution kernels. The input xt, the cell state ct, the hidden state ht, the forget gate
ft, the input gate it, and the output gate ot are all 3D tensors. The symbol ∗ denotes
the convolution operator, and ◦ is the Hadamard product. Comparing this formulation
with the equations derived in subsection 2.6.6, one may observe that the main difference

78 Chapter 3. A Deep Learning Model for Inflation Forecasting

between a conventional LSTM network and ConvLSTM lies on the convolutions carried out
when updating states and gates. Experiments show that ConvLSTM networks are more
effective at capturing spatiotemporal correlations, consistently outperforming standard
LSTM networks; see Shi et al. (2015).

It is worth emphasizing that the choice of a hybrid model that merges convolutional
and LSTM networks is not only supported by the empirical results reported in the literature
regarding the successful applications of ConvLSTM for time series modeling and forecasting.
Supplementary studies show that, in general, hybrid models tend to deliver more robust
performance than a single model in several situations. For instance, Bai, Tang and An
(2019) demonstrate the effectiveness of utilizing CNNs and LSTMs to classify scene images
with multi-views and multi-levels of abstraction. This combination outperforms several
state-of-the-art methods in their experiments. In distinct contexts, similar results are
provided by Kristjanpoller and Minutolo (2015), who merge ANNs and GARCH models to
predict the price return volatility of gold spot and future prices; by Dash et al. (2010), who
combine genetic algorithms and ANNs for groundwater level prediction; and by Khashei
and Bijari (2011), whose model for time series forecasting stems from a hybridization of
artificial neural networks and ARIMA models.

Moreover, with the accelerated development and gradual maturity of deep learning,
some practitioners began to realize that the local connection and global sharing features of
convolutional neural networks can greatly diminish the required parameters and training
time of the model. This approach is applied by Sezer and Ozbayoglu (2018) for financial
trading, where the authors select 15 distinct technical indicators and compute their values
for a 15 day period to convert price series into 2D images, which are later processed by a
deep CNN.

As another example, Lee and Kim (2020) employ ConvLSTM, trend sampling, and
specialized data augmentation for stock market forecasting. The framework developed
can successfully learn high-level features from super-high dimensional time series. Specific
regularization and mini-batch sampling techniques are used to improve out-of-sample
performance. In an application involving the stock indices S&P500, KOSPI200, and
FTSE100, the model managed to defeat its competitors. The work highlights not only the
advantages of merging several approaches for time series forecasting, but also the importance
of techniques focused on preventing overfitting, which are discussed subsequently.

3.2 Computational Implementation

After establishing the theoretical foundations of variational autoencoders and con-
volutional LSTM networks, it is feasible to proceed and commence the explanation of
the model proposed herein for inflation forecasting. In addition, the computational imple-
mentation can also be approached. With this intent, Figure 15, Figure 16, and Figure 17,

3.2. Computational Implementation 79

which portray the VAE and the ConvLSTM networks underpinning the model, will orient
the discussion.

Figure 15 – Flowchart representing the implementation of the variational autoencoder
using the library Keras in Python. Even though this characterization is far
more complex than the one outlined in Figure 14, the encoding, decoding,
and sampling elements are still present. The additional layers are simply
intermediate functions required by Keras for implementation.

According to Figure 13, in the first stage, the input data is loaded in the variational
autoencoder, whose implementation is depicted in Figure 15. Fundamentally, the archi-
tecture proposed is closely related to the one examined in previous sections. Indeed, for
p(X|z), a normal distribution is selected. The mean vector and covariance matrix are
estimated via a fully connected MLP that receives as input the encoded data. The strategy
of maximizing the variational lower bound is also employed here.

Moving forward, the encoded data conceived by the VAE is transferred to the
ConvLSTM network represented in Figure 16, whose implementation in Python is shown
in Figure 17. The flowcharts unveil the inner layers of the architecture, displaying the
existence of:

1. Two ConvLSTM layers, which are responsible for extracting spatiotemporal features

80 Chapter 3. A Deep Learning Model for Inflation Forecasting

Input Layer

57x3x4x478

ConvLSTM Layer

16 Filters, 3x3 Kernel

ConvLSTM Layer

16 Filters, 3x3 Kernel

Max Pooling

2x2x2

B

A

T

C

H

N

O

R

M

B

A

T

C

H

N

O

R

M

D

R

O

P

O

U

T

D

R

O

P

O

U

T

Flatten Layer
LSTM Network

2 Layers, 100 Units

Fully Connected MLP

64x32x1

Dropout Layer

Rate = 0.2

Dropout Layer

Rate = 0.2

Batch

Normalization

Batch

Normalization

D

R

O

P

O

U

T

Dropout Layer

Rate = 0.2

Figure 16 – Flowchart representing the layers of the ConvLSTM model designed in this
study. The input layer receives the encoded data supplied by the variational
autoencoder (a 57×3×4×478 tensor) and transfers the data to a sequence
of convolutional LSTM, dropout (with a dropout rate of 0.2), and batch
normalization layers. The convolutional layers have 16 filters and a 3×3 kernel
(filter size). Next, a 3D max pooling layer (2×2×2) summarizes the data,
which is then flattened and inserted in a LSTM network formed by two layers.
with 100 units each, whose output is processed by a fully connected deep
multilayer perceptron (constituted by 3 layers, with 64, 32 and 1 units each,
respectively). Finally, the deep MLP generates inflation forecasts.

3.2. Computational Implementation 81

Figure 17 – Flowchart representing the implementation of the advocated ConvLSTM
model using the library Keras in Python. The steps are consistent with those
depicted in Figure 16. Dropout is embedded in the ConvLSTM layers.

82 Chapter 3. A Deep Learning Model for Inflation Forecasting

and transforming the time series, generating almost a timeline that shows when
different features appear in the time series. Each of these are immediately followed by
dropout and batch normalization layers, whose roles will be scrutinized subsequently;

2. A summarizing max pooling layer that receives as input the outputs of the convolu-
tional layers;

3. A flatten layer that converts tensors into vectors;

4. A conventional, simple, stacked LSTM network that receives the flattened tensors
and captures temporal dependencies. These LSTM layers also encompass dropout
layers; and

5. A MLP that reduces the output of the LSTM network to a single inflation forecast.

Thus, the network begins effectively with two ConvLSTM layers intertwined with
dropout and batch normalization layers, which receive the encoded data from the VAE
in the form of a 4D tensor. Each dimension of the tensor is related to a different aspect
of the data: (a) the number of “principal components” generated by the VAE; (b) the
number of observations in the period analyzed; (c) the number of subsets into which each
window of observations is split; and (d) the number of elements per subset. This approach
resembles the one proposed by Sezer and Ozbayoglu (2018) to convert time series into
“images” that can be processed by convolutional networks, including the ConvLSTM.

As one might expect, various configurations were subject to evaluation until the tensor
described in Figure 16 was reached. This empirical approach was deemed satisfactory due
to the fact that, being ConvLSTM networks a emerging field, no consensus regarding the
optimal configuration exists, and, given the peculiarities of every problem feasible to tackle
with these networks, a general rule may never be conceived. The thorough investigation of
more effective architectures is reserved for future studies, since the objective here is to
prove that these networks can be successfully wielded to model and forecast time series, in
particular those originated by macroeconomic variables.

Furthermore, the ConvLSTM presents the same structure proposed by Shi et al.
(2015), which is described by Equation 3.7 to Equation 3.12. Concerning the configuration
of this layer, the activation function chosen is the SELU function developed by Klambauer
et al. (2017) due to its superior properties in comparison to other options such as sigmoid
or ReLU. Initialization of the neurons is based on drawing the weights from a truncated
Gaussian distribution; see Klambauer et al. (2017).

Inspired by the configurations tested by Sezer and Ozbayoglu (2018), 16 filters and a
filter (kernel) size of 3×3 provide the convolution capability with closest neighbors’ (upper,
lower, right, left, upper left, upper right, lower left, and lower right) information while
processing the current layer. Thus, sharp variations within the matrix can be captured
and a decent number of lags will be assessed each time the filter is run. Also, adhering

3.2. Computational Implementation 83

to the best practices in the literature, zero padding is adopted, meaning that the size of
the input is automatically adjusted to avoid shrinking the spatial extent of the network
rapidly and/or using small kernels, harming the generalization power of the network; see
Goodfellow, Bengio and Courville (2016).

It is worth mentioning that, although there is no clear rule in the literature guiding
how to optimize the filter size, few filters cannot infer enough features to improve the
learning ability of the network. On the other hand, an excessive number of filters may
decrease the efficiency of the feature extraction process, since too much data will be
analyzed simultaneously and, thus, the filter may become blurry and fail to identify the
underlying features.

At this point, it should be highlighted that neural networks are known not to be
very robust to noise, as claimed by Tang and Eliasmith (2010). Furthermore, overfitting
is a serious risk in such models, as argued by Srivastava et al. (2014). Bishop (2006)
proposes regularization as an approach to controlling the complexity of a model, focusing
on improving the generalization power of a neural network. Generically, regularization is
any modification made to a learning algorithm with the intent of reducing the generalization
error, but not necessarily its training error (GOODFELLOW; BENGIO; COURVILLE,
2016).

Hence, an alternative to circumvent the aforementioned limitations of neural networks
is the addition of dropout layers, which is a regularization strategy that can be seen as a
procedure of constructing new inputs by multiplying by noise (GOODFELLOW; BENGIO;
COURVILLE, 2016). Dropout provides a computationally inexpensive, but potent method
of regularizing a broad family of models (GOODFELLOW; BENGIO; COURVILLE, 2016).
Moreover, training is virtually unchanged, for dropout networks can be trained using
stochastic gradient descent in a similar fashion to standard networks.

The main idea behind dropout is to randomly drop units, along with their connections,
from the network during the training stage, preventing exaggerated co-adaption, as
advocated by Srivastava et al. (2014); see Figure 18. In some sense, it resembles bagging,
but with an exponentially large number of neural networks acting as the different models
used in bagging (GOODFELLOW; BENGIO; COURVILLE, 2016). Dropout significantly
reduces overfitting and is competitive against other similar strategies. Indeed, Srivastava et
al. (2014) report performance improvement on supervised learning tasks in vision, speech
recognition, document classification and computational biology.

Mathematically, inspired by Srivastava et al. (2014), dropout can be formulated as
follows. Consider a standard feedforward network with L hidden layers and let 1, . . . , L
be the index of these layers and l ∈ {0, . . . , L − 1}. Also, let z(l) denote the vector of
inputs z(l)

i into layer l, and y(l) be the vector of outputs y(l)
i of this layer. In addition, W (l)

and b(l) are the matrix of weights w(l+1)
i and the vector of biases b(l+1)

i at layer l. The

84 Chapter 3. A Deep Learning Model for Inflation Forecasting

Figure 18 – Illustration of the possible impacts of dropout in a standard neural network
model. In the left, there is a fully connected MLP with two hidden layers.
In the right, after the dropout procedure, units have been dropped and the
network loses several connections. Source: Srivastava et al. (2014).

operations that occur at the neurons i of every layer l of the network are:

z
(l+1)
i = w(l+1)

i · y(l) + b
(l+1)
i (3.13)

y
(l+1)
i = f(z(l+1)

i) (3.14)

where f is a predefined activation function.
When dropout is added, the operations become:

r
(l)
j ∼ Bernoulli(p) (3.15)

ỹ(l) = r(l) ◦ y(l) (3.16)

z
(l+1)
i = w(l+1)

i · ỹ(l) + b
(l+1)
i (3.17)

y
(l+1)
i = f(z(l+1)

i) (3.18)

where ◦ is the element-wise product, and r(l)
j is a vector of independent Bernoulli random

variables with probability p of being 1 and 1−p of being 0. In every iteration, this vector is
randomly generated and multiplies y(l) to create thinned outputs. The result is equivalent
to sampling a sub-network from a larger network. During the test window, weights are
scaled as W (l)

test = pW (l).

3.2. Computational Implementation 85

In the model proposed for inflation forecasting, dropout layers have been added
exclusively after the ConvLSTM and the LSTM layers. This decision is justified by the
fact that the core of the forecasting process happens at those stages. The succeeding
MLP layers essentially convert their output into a inflation estimate, but the knowledge is
concentrated in the previous engines. However, to test this reasoning, other configurations
have been implemented, with additional dropout layers, and the results were virtually the
same in terms of out-of-sample performance. Moreover, the calibration of the parameter p,
which was set in the final version of the model as p = 0.8 or, equivalently, a dropout rate
of 0.2, was carried out empirically, since there is no consensus in the literature and the
optimal choice varies according to the context considered.

Another way to improve optimization and out-of-sample performance in deep neural
networks is batch normalization, which reparameterizes the network by inserting both
additive and multiplicative noise on hidden units at training time. The reparametriza-
tion significantly attenuates the problem of coordinating updates across many layers
(GOODFELLOW; BENGIO; COURVILLE, 2016). Essentially, batch normalization in-
volves normalizing the data flowing through the layers of a network, i.e., ensuring that,
from a layer to the next, data has zero mean and unit standard deviation.

The main implication is that gradient-based optimization algorithms become immune
to operations that simply change the standard deviation or the mean of the data without
effectively improving the out-of-sample performance of the model (GOODFELLOW;
BENGIO; COURVILLE, 2016). Precisely, according to the empirical analysis provided
by Cho et al. (2014), networks without batch normalization are prone to suffering from
learning limitations, since large gradient updates may result in diverging loss and activations
growing exponentially with network depth. Santurkar et al. (2018) demonstrates that
the improvements obtained from batch normalization emerge from the fact that this
strategy makes the optimization landscape smoother, and this smoothness induces a more
predictive and stable behavior of gradients, allowing for faster training. In the simulations
performed in this study, batch normalization had a positive effect, consistently with the
results reported by Ioffe and Szegedy (2015).

Technically, for a layer with d-dimensional input x = (x(1), . . . , x(d)), each dimension
is normalized via the function (IOFFE; SZEGEDY, 2015):

x̂(k) = x(k) − E[x(k)]
σ[x(d)] (3.19)

where the expectation E[·] and standard deviation σ[·] operators are computed conditioned
on the training set. It is worth noting that, for convolutional layers, ConvLSTM layers
included, normalization must obey the convolutional property, as observed by Ioffe and
Szegedy (2015). Equivalently, different elements of the same feature map, in distinct
locations, must be subject to the same normalization process. In order to achieve this, Ioffe
and Szegedy (2015) advocate the joint normalization of all activations in a mini-batch,

86 Chapter 3. A Deep Learning Model for Inflation Forecasting

over all locations.
The model designed also contains a pooling layer. By definition, its purpose is to

transform the output of the previous layer prior to letting the data continue to flow through
the network. In practical terms, the pooling function replaces the output at a certain
location with a summary statistic computed using nearby outputs. The consequence is
that the representation becomes almost invariant to small translations of the input, which
is a desirable property whenever the presence of a certain feature is more important than
its position in the data. As highlighted by Goodfellow, Bengio and Courville (2016), the
use of pooling can be equivalently viewed as adding an infinitely strong prior that the
function the layer learns must be invariant to small translations.

A simple way to understand how pooling works is to consider a hypothetical neural
network designed to identify whether a sequence of images contains dogs. Obviously, the
position of a dog in each image is irrelevant, and the model must only be concerned with its
presence. Thus, the network should be trained with this objective, and pooling layers give
significant contributions. In the case of time series, these layers can be useful to identify
extreme events (i.e. shocks), for instance. It is not necessary to known the exact moment
when a shock occurs, solely to confirm that, in a certain time window, it might have taken
place and, therefore, the observations in this period might not be representative of the
long-term trends.

One of the most common types is the max pooling function developed by Zhou
and Chellappa (1988). In its most basic form, the function computes the maximum
output within a rectangular neighborhood (GOODFELLOW; BENGIO; COURVILLE,
2016). Scherer and Müller (2010), in a study devoted to convolutional architectures for
object recognition, focus on gaining insights into distinct pooling functions by directly
comparing them via a common architecture for a wide selection of object recognition tasks.
The experiments reveal that a maximum pooling operation significantly outperforms the
competitors. Corroborating these findings, Murray and Perronnin (2014) demonstrate that
a generalized form of max pooling leads to significant performance gains with respect to
heuristic alternatives in five public image classification benchmarks.

The ensuing layer found in the model proposed is a flatten layer, which performs a
mathematical operation analogous to the vectorization of matrices. In the code implemented,
the flatten layer converts tensors into arrays. The operation is required for the next step,
involving stacked LSTMs. The LSTM model adopted here is similar to the version with
a forget gate advocated by Gers, Schmidhuber and Cummins (2000) and implemented
by Bao, Yue and Rao (2017) and Fischer and Krauss (2018). A total number of 100
cells is adopted in each layer, and dropout layers with p = 0.8 are also added. The
activation function and the recurrent function selected are hyperbolic tangent and sigmoid,
respectively, choices which have been guided by the best practices found in the literature.

Naturally, other configurations of LSTM cells could have been implemented. In

3.2. Computational Implementation 87

fact, some of these possibilities were tested, although, for the sake of objectivity, the
results have been omitted. An example is the number of cells in the layer. Increasing or
decreasing the number with respect to the base case seemed to have little influence on the
out-of-sample performance. Additionally, the number of LSTM layers also had weak effects.
Other popular versions of LSTM, such as the Bidirectional LSTM (see Yu et al. (2019)
for details), were also examined, without delivering a statistically superior performance.
Nevertheless, a thorough scrutiny of these architectures, focusing on their impacts on the
performance of the model, is desirable and could be the subject of future studies.

In the sequence, a fully-connected MLP converts the output of the LSTM into a
inflation forecast. The layer starts with a hidden layer of 64 units, which is linked to another
hidden layer comprised by 32 units and, finally, to an output neuron. Consistently with
preceding choices, SELU is the activation function of each of these neurons, even though,
in this part of the model, there is a marginal difference in performance with respect to
the scenario in which ReLU is employed. Again, other configurations are conceivable. For
instance, the number of hidden layers and of units per layer could be modified. However,
the final accuracy is not significantly sensitive to these choices.

89

4 DATA AND METHODOLOGY

In this section, we discuss the data and methodology for fitting the model created
for inflation forecasting and the benchmarks elected for performance evaluation. At the
outset, these benchmarks are introduced, emphasizing their implementation for posterior
empirical assessment of the out-of-sample predictive accuracy. In the sequence, the dataset
is presented, also explaining the breakdown of the samples into training and test ones.
Finally, the programming languages, libraries, and functions required for the computational
routines used to fit the models are examined as well.

4.1 Benchmarks for Performance Appraisal

A broad, diverse, and fundamentally justifiable collection of benchmarks is crucial for
the appraisal of forecasting models. Without question, selecting inadequate benchmarks
may result in a misleading gauge of the out-of-sample precision of a model, since accu-
racy analysis must always be executed in a relative basis, comparing against competing
alternatives for prediction. Indeed, the primary concern is to establish whether the model
developed is capable of reducing the forecasting errors encountered in models commonly
applied by practitioners and academics.

In an effort to accomplish this objective, a set of 25 benchmarks has been elected for
relative performance analysis, which are listed below. The details of those that requiring
the tuning of hyperparameters are examined afterwards.

1. Random walk;

2. Ridge regression (coupled with cross-validation).

3. Bayesian Ridge regression;

4. LASSO regression (coupled with cross-validation);

5. Bayesian LASSO;

6. Elastic net;

7. Support vector regression (coupled with PCA for dimension reduction);

8. Random Forests (coupled with PCA for dimension reduction);

9. BART (coupled with PCA for dimension reduction);

10. Bagging (coupled with PCA for dimension reduction);

11. K-Nearest Neighbors regression (coupled with PCA for dimension reduction);

90 Chapter 4. Data and Methodology

12. Robust regression with Huber loss;

13. Theil-Sen robust regression;

14. Factor models;

15. GARCH model;

16. Vector error correction model (VECM);

17. SETAR model;

18. Moving average model, based on Atkeson and Ohanian (2001);

19. Seasonal ARIMA (SARIMA) model;

20. ARFIMA (fractional ARIMA);

21. Gradient boosting;

22. AdaBoost;

23. Bayesian regression;

24. Multilayer perceptron;

25. Standard LSTM network.

The random walk model is the most naive forecasting model. It simple assumes
that one-period-ahead expected inflation, conditional on all the past observations, equals
the rate observed in the most recent period. As a stochastic process, it behaves as a
discrete-time martingale, implying that no insight can be extracted using previous inflation
rates and/or other variables. Thereby, due to its simplicity and assumptions, it is a natural
benchmark to determine whether it is feasible to generate more accurate predictions using
more complex model to embody past and current data and relate to one-period-ahead
inflation.

Ridge regression and its Bayesian version are implemented exactly according to the
exposition in subsection 2.3.2. In the first case, cross-validation is adopted to estimate the
optimal relative weight between regulation and goodness-of-fit. The inputs are not treated
in any way, meaning that no dimension reduction and denoising techniques are used here.
Indeed, the Ridge estimator, by penalizing the sum of squared coefficients, attempts to
reinforce significant variables while shrinking those deemed unnecessary. In the process, it
also mitigates the effects of multicollinearity.

The implementation of LASSO regression follows subsection 2.3.1 and, analogously
to the Ridge regression implementation, cross-validation is employed to estimate the
hyperparameter. The same is valid for Elastic Net, covered in subsection 2.3.3. Moreover,

4.1. Benchmarks for Performance Appraisal 91

the Bayesian LASSO regression was implemented following Park and Casella (2008) and
the manual of the library monomvn in R1. The main difference is that, for improved
mixing, a Rao-Blackwellized sample of σ2 (with β integrated out) is used. Model selection
is performed by Reversible Jump MCMC. This strategy departs from Park and Casella
(2008), who suggest a latent-variable model demanding sampling from each conditional
βi|βj,∀i 6= j, since a mixture prior with a point-mass at zero is placed on each βi. Here,
the implementation requires no special prior and retains the joint sampling from the full β
vector of non-zero entries.

For k-NN regression, the user must input the number of neighbors considered when
predicting the dependent variable, that is, k must be predefined. A low value makes the
model more responsive and may improve in-sample goodness-of-fit, but may also lead
to overfitting. On the other hand, a high value of k yields smooth predictions, failing to
capture the dynamics of the data. In the simulations executed, k = 25 performed decently
in terms of out-of-sample accuracy.

In the case of Random Forests, the hyperparameters have been calibrated empirically.
The number of trees in the forest was set to 20, without a maximum depth. The minimum
number of samples required to split an internal node is 4, and the chosen training criterion
to measure the quality of a split was the MSE. The minimum number of training samples
required in each left and right branches of a split point was set equal to 1. BART has
been tuned in the same way, resulting in 200 trees. The prior for the error variance is
the inverted chi-squared. Fitting is implemented via MCMC. Both models are trained
using a version of the dataset treated using PCA due to the large amount of time series,
exponentially increasing the computing time.

Factor models are implemented in line with Bai and Ng (2008) and Medeiros et al.
(2019), who propose targeting the predictors. The strategy is to compute the principal
components only of those variables with explanatory power when forecasting inflation.
Inspired by Medeiros et al. (2019), the algorithm can be summarized as follows:

1. Using lagged values of πt as controls, regress πt+h on the vector of candidate variables,
Xt, and compute the corresponding t-statistics for the coefficients of each variable;

2. For a given significance level, select all variables whose t-statistics are above the
critical value;

3. For the set of variables found using the prior steps, estimate the factors Ft using
PCA;

4. Regress πt+h on ft−j, j = 0, 1, . . . , 11, where ft ∈ Ft are the factors selected using
the BIC (Bayesian Information Criterion).

1 Available at: https://www.rdocumentation.org/packages/monomvn/versions/1.9-13/topics/blasso. Last
access: 25 Dec. 2020.

92 Chapter 4. Data and Methodology

In what concerns the GARCH model, the option was to implement the GARCH(1,1)
version, which is frequently used due to its ability to adjust adequately to many time
series. For the ARFIMA, the fractional differencing parameter and the number of lags are
chosen iteratively seeking to achieve the best goodness-of-fit. Meanwhile, SARIMA was
adjusted by first observing that the inflation time series used in the numerical exercises is
seasonally adjusted, as explained in the next section. The number of lags was determined
via BIC. For the SETAR model, an analogous process was followed, and it was assumed
that two regimes were sufficient, for they can be associated with economic cycles (periods
of recession and expansion).

In parallel, the VECM model implemented replicates the approach by Cologni
and Manera (2008). One distinction is that the authors use quarterly data, while the
present work employs monthly time series. Therefore, it was necessary to replace the GDP
used by the authors by a correlated monthly variable or a monthly estimate of GDP.
Although nowcasts of GDP could be an alternative, industrial production was preferred
because it is readily available in the dataset considered here and it is highly correlated
with GDP due to the composition of the later. So as to determine the number of lags,
several combinations were tested until the one with highest quality, measured in terms of
out-of-sample performance, was obtained.

With respect to the moving average model, the reference is Atkeson and Ohanian
(2001), who evaluate whether the conventional wisdom that modern Phillips curve-based
models are appropriate for inflation forecasting. The authors compares the performance
against a naive model assuming that expected inflation over the next four quarters is equal
to the inflation over the previous four quarters. That is:

Et(πt+4 − πt) = 0 (4.1)

Here, πt is the percentage change in the inflation rate between quarters t− 4 and t. The
conclusion is that, for the period considered, no version of the Phillips curve makes more
accurate inflation forecasts than those from the naive model. Therefore, including this
approach as a benchmark is suitable and advisable.

The Bayesian regression is the Bayesian version of the conventional OLS for a linear
regression. It is a traditional method in Statistics, explaining why a full coverage is deemed
dispensable; details can be found in Gelman et al. (2004), among others. Here, we replicate
the classical assumptions based on a Gamma-Gaussian conjugate prior. Estimation is
fulfilled via Evidence Maximization. In a similar manner, Gradient Boosting is implemented
with a quadratic loss to resemble OLS for linear regression.

Regarding the multilayer perceptron, a network fully connected with 6 hidden layers
and 200 units per layer was designed and fitted. As expected, increasing the number of
layers yielded positive results, but a deeper network than the one considered did not
improve the out-of-sample performance substantially. The amount of units per layer has

4.2. Data 93

also been tuned empirically, aiming to optimize the accuracy when evaluating the test
sample.

Finally, the standard LSTM is formed by two sequential LSTM layers constituted
by 50 cells. The network was trained using the optimization algorithm NADAM with a
maximum of 70 epochs and a batch size of 32. The reasoning behind the setting of these
particular parameters is scrutinized in section 4.5.

4.2 Data

The database employed to fit the model developed in this work and the selected
benchmarks was provided by McCracken and Ng (2016). The authors maintain in their
website2 a public macroeconomic database comprising 134 monthly US time series freely
available at FRED (Federal Reserve Economic Data, which belongs to the Federal Reserve
Bank of St. Louis). These time series had to be supplemented by the PMI (Purchasing
Managers’ Index) compiled by the Institute for Supply Management (ISM), which, at the
time of this publication, is no longer available at FRED. The variables are grouped in the
following categories (a full description of the dataset is provided in Appendix A):

1. Output and income (17 time series);

2. Labor market (32 time series);

3. Housing (10 time series);

4. Consumption, orders, and inventories (13 time series);

5. Money and credit (14 time series);

6. Interest and exchange rates (22 time series);

7. Prices (21 time series); and

8. Stock market (5 time series).

The selection of this database for model estimation is justified for multiple reasons.
Primordially, McCracken and Ng (2016) implemented the best practices reported in the
literature to design a database convenient for empirical analysis that requires big data.
Hence, it seems appropriate for the intent of this work. Furthermore, this data has been
extensively used in the literature in similar studies; for example, see Medeiros et al. (2019).
Finally, the time series provided are lengthy, covering several decades and economic cycles.

For the purposes of this work, the period analyzed ranges from January 1978 to
December 2019, amounting to 504 observations, which is a size deemed significantly
2 https://research.stlouisfed.org/econ/mccracken/fred-databases/. Last access: 28 Dec. 2020.

94 Chapter 4. Data and Methodology

superior to the number of variables contained in the dataset and is sufficient for model
estimation with controlled errors. Inflation is gauged by US Consumer Price Index (CPI)
for All Urban Consumers (code “CPIAUSCL” in the FRED database), which is a measure
of the average monthly change in the price for goods and services paid by urban consumers
in United States between any two periods.

In terms of transformations to which each series have been subject, details are
available in Appendix A. In addition to those operations, all the time series have been
normalized prior to being used to fit the ConvLSTM model and its benchmarks. Whenever
required, series are seasonally adjusted, and this is the case of the CPI.

4.3 Training, Validation, and Test Sets

As highlighted by Goodfellow, Bengio and Courville (2016), the central challenge
in machine learning is that models must perform reasonably well on new, previously
unseen inputs. That is, they must generalize the knowledge acquired from the sample
of observations provided, apply it to unobserved inputs, and produce satisfactory out-of-
sample performance. In that sense, there is a fundamental difference between machine
learning and optimization: not only the training error must be low, but also the test error,
since the later is directly related to the degree of generalization.

In this scenario, a popular solution is to split the input data into training and
test samples. It is also usual to separate data for validation during the training stage.
Consequently, the dataset described in section 4.2 was split as follows (see Figure 19).
First, 20% of the observations were reserved for testing. Of the remaining data, 90% of
the observations, or 72% of the complete dataset, were applied for training and the rest,
for validation. These percentages are aligned with guidelines available in the literature.

72% 20%

Test SetValidation

Set

8%

Training Set

Figure 19 – Simplified view of the splitting process of the dataset used to train and test
the model.

When dealing with time series, the preceding splitting process must be adapted.
Indeed, random splits will certainly disrupt the autocorrelation of the series, making them
improper for fitting any model. An alternative is to implement this procedure in blocks or,
equivalently, including the lags of the time series as new variables. This way, a split will
not mask the autocorrelations, for every observation of a given variable in a particular

4.3. Training, Validation, and Test Sets 95

instant will be accompanied by the respective observations of that same variable, but
shifted backwards in time.

Besides the splitting process detailed, strategies for improving the reliability of the
out-of-sample performance analysis have been considered. One of the favored approach is
k-Fold Cross-Validation, as reported in James et al. (2013) and Kuhn and Johnson (2013).
It is a widespread method due to its simplicity and efficiency. Entails randomly dividing
the set of observations into k groups, or folds, of approximately equal size. The first fold
is treated as a validation set, and the method is fitted on the remaining (k − 1) folds
(JAMES et al., 2013). The general procedure works as follows:

1. Initially, the dataset is shuffled randomly;

2. The dataset is then split into k equally sized subsets;

3. For each possible combination available, the following steps are carried out: (a) a
single subset is selected as a test sample, while the remaining are employed as a
training sample, a share of which is also used for validation; (b) the model is fit
on the training set and evaluated on the test set; and (c) evaluation metrics are
computed using the test sample so as to assess the out-of-sample performance;

4. Finally, the skill of the model is summarized using the sample of model evaluation
metrics.

The value of k must be selected carefully, since there is a bias-variance trade-off
involved which may compromise the assessment of the model skill. To summarize the
dilemma, as discussed by Kuhn and Johnson (2013), the trade-off is associated with the
choice of k in k-fold cross-validation. Typically, given these considerations, one performs
k-fold cross-validation using k = 5 or k = 10, as these values have been shows empirically
to yield test error rate estimates that suffer neither from excessively high bias nor from
very high variance. It should be noted that, as k gets larger, the difference in size between
training set and the resampling subsets gets smaller. As this difference decreases, the bias
of the technique becomes smaller. For this study, k = 10 has been adopted.

Furthermore, Monte Carlo simulation supplemented cross-validation so as to enhance
the reliability of the empirical analysis. More specifically, the splitting of the dataset into
training, validation, and test sets has been repeated 100 times, yielding different splits.
This strategy was deemed important because, despite the power of cross-validation, the test
set remains unchanged during the process. Simulation also increased the number of times
the out-of-sample performance of each model was measured, allowing the computation of
confidence intervals for these metrics, as explained subsequently in chapter 5.

Finally, it should be noted that the approach based on splitting the input data into
different samples imposes some daunting challenges to the implementation of traditional
time series models, such as ARIMA or GARCH. In order to circumvent this hindrance,

96 Chapter 4. Data and Methodology

bootstrapping was elected. Concisely, the technique estimates the model coefficients via
an initial training set and simulates the fitted model using Monte Carlo to generate new
samples, which are separated into new training, validation, and test samples.

4.4 Programming Languages

The models discussed herein were implemented mainly using Python (version 3.7.9).
R (version 4.0.2) was resorted to whenever a function could not be readily found in Python
or a more efficient routine existed in R. All functions are CPU-based, that is, parallel
GPU processing was not considered here to reduce execution time, but this possibility
could be exploited in future studies. The routines have been executed in a PC with a Intel
Core i7-7700HQ running Microsoft Windows with 16 GB of RAM.

For machine learning models, Tensorflow (version 2.3.0), Keras (version 2.4.3), and
Scikit-Learn (version 0.23.2), also known as SKLearn, were used. The former is an end-to-
end open source platform for machine learning. Keras is built on top of Tensorflow and
offers a consistent and user-friendly API for the implementation of a wide selection of deep
learning architectures. SKLearn provides several regression models elected as benchmarks,
such as Ridge regression, LASSO and Random Forests. Other libraries accessed include:

• Monomvn (version 1.9-13);

• Glmnet (version 4.0-2);

• BayesTree (version 0.3-1.4);

• Rugarch (version 1.4-4);

• TsDyn (version 10-1.2); and

• Forecast (version 8.13).

The complete list of models, languages, libraries, and functions resorted to in the
computational implementation is compiled in Table 2. All the routines implemented by
the author of this dissertation, in their full version, are found in the following Github page:
https://github.com/AlexandreFT31/Machine_Learning_Inflation.

4.5 Training and Optimization of Neural Networks

A fundamental aspect of neural networks relates to the choice of loss function
and optimization algorithm. Many eligible options are available in the literature, and
a exhaustive review is outside the scope of this work. Still, due to the importance for

4.5. Training and Optimization of Neural Networks 97

Table 2 – Programming languages, libraries, and main functions used in the implementation
of the models discussed in the present dissertation.

Model Language Library Functions
LSTM Python Tensorflow and Keras LSTM

ConvLSTM Python Tensorflow and Keras ConvLSTM2D
Autoencoder Python Tensorflow and Keras Dense, Lambda

MLP Python SKLearn MLPRegressor
Ridge Python SKLearn Ridge, RidgeCV

Bayesian Ridge Python SKLearn BayesianRidge
LASSO Python SKLearn Lasso, LassoCV

Bayesian LASSO R Monomvn Blasso
Elastic Net R Glmnet Glmnet

SVR Python SKLearn Make_pipeline
Random Forest Python SKLearn RandomForestRegressor
KNN Regression Python SKLearn KNeighborsRegressor

BART R BayesTree Bart
Bagging Python SKLearn BaggingRegressor

Huber Regression Python SKLearn HuberRegressor
Theil-Sen Regression Python SKLearn TheilSenRegressor
Factor Regression Python SKLearn PCA, OLS

GARCH R Rugarch UGARCHspec
VECM R tsDyn VECM
SETAR R tsDyn SETAR
SARIMA R Forecast Arima
ARFIMA R Forecast Arfima
GradBoost Python SKLearn GradBoostRegressor
AdaBoost Python SKLearn AdaBoostRegressor

Bayes Regression Python SKLearn ARDRegressor

out-of-sample performance, a review, even a concise one, is called for to justify the design
of the model proposed for inflation forecasting.

With respect to loss functions, the most frequent in the literature is the mean
squared error (MSE). For instance, Chong, Han and Park (2017) survey and compile
several papers and a significant share use MSE and/or a related measure, RMSE (Root
Mean Squared Error). This preference is explained by the fact that, in many regression
problems, satisfactory results are delivered. Besides, this function is also usual when fitting
many time series models, making the comparison between machine learning and traditional
econometric models easier. Notwithstanding, there are alternatives. For instance, mean
absolute error (MAE) is an option fairly robust to outliers. Analogously, Huber loss, defined
by:

L(ε) =


1
2ε

2, if |ε| ≤ δ

δ
(
|ε| − 1

2δ
)

if |ε| > δ
(4.2)

where ε is the measured error, also handles outliers by placing higher loss on absolute
errors above a certain threshold δ. Among these and other possibilities, the decision was

98 Chapter 4. Data and Methodology

to proceed with MSE due to the strong results obtained. Evidently, a detailed examination
of this modeling aspect could lead to improvements, but it is outside of the scope of this
work and, therefore, is left for future extensions.

Regarding the selection of the optimization algorithm for training, unfortunately
no consensus is available. However, a recent and promising approach was advanced
by Kingma and Ba (2015), called ADAM (“ADAptive Moment estimation”), which is
an algorithm for first-order gradient-based optimization method of stochastic objective
functions. ADAM behaves well for non-convex objective functions, which are pervasive in
machine learning. In an empirical analysis conducted by Soydaner (2020), even though there
is some heterogeneity in the relative performance against other optimization algorithms,
ADAM displayed satisfactory results in multiple applications, achieving low mean-squared
errors in decent computing time.

Although the full outputs are not reported here and a detailed analysis is not
the purpose of the present work, ADAM, together with Nesterov momentum and a
quadratic loss function, has also generated the best performance out-of-sample in the
context of inflation forecasting, justifying their selection when fitting the neural networks
models considered here. Nesterov momentum accelerates the convergence of gradient-based
algorithms, explaining its inclusion; see Dozat (2016) for further details.

Finally, it is appropriate to discuss the influence of the number of epochs and the
batch size in the optimization process. By definition, each epoch corresponds to a complete
pass through the training dataset, differing from the batch size, which determines the
number of samples processed prior to updating the model parameters via the learning
(optimization) algorithm. Unfortunately, no consensus exists in the literature regarding
adequate values for these hyperparameters. They must be calibrated in an ad hoc way,
usually choosing as criteria the performance derived out-of-sample, i.e. the generalization
power of the network.

Naturally, there is a trade-off between in-sample and out-of-sample performance
when setting the number of epochs. As the number increases, the network will pass through
the training dataset more times, having greater opportunity to learn the features of the
inputs and, thus, improving the prediction accuracy in-sample. However, at the same time,
the likelihood of overfitting also increases, for the network may learn how to accurately
reproduce the training dataset and, in the process, it may lose generalization power because
its coefficients have been excessively tuned to minimize the loss function in the training
dataset.

Therefore, the loss function out-of-sample starts decreasing as the number of epochs
increase (underfitting region), achieves a minimum at a certain point and, subsequently,
starts increasing due to overfitting. This can be seen in Figure 20, where the MSE out-
of-sample attains a minimum value for a number of epochs between 35 and 40. For this
reason, a total number of 70 epochs seemed reasonable to train every neural network

4.5. Training and Optimization of Neural Networks 99

model considered in this work, find the minimum of the out-of-sample loss function, and
select the corresponding parameters.

0 10 20 30 40 50 60 70

Epoch

0.2

0.4

0.6

0.8

1.0

1.2

M
S

E

MSE of the ConvLSTM as a Function of the Number of Epochs

Training Set

Test Set

Figure 20 – Illustration of the behavior of the MSE of the ConvLSTM model proposed
in this work for inflation forecasting. The batch size is equal to 32. The test
MSE begins decreasing until it reaches a minimum around 35-40 epochs. After
that point, it increases, despite the fact that the training MSE keeps declining.
Consequently, there are no gains in terms of generalization in training the
model afterwards.

The effects of the batch size on the learning process are more complex and technical.
According to Keskar et al. (2017), in practice, for deep networks, it has been observed
that large batches lead to a stark degradation in the quality of the model, as measured by
its generalization power. The authors also claim that empirical results show that the lack
of generalization arises from the fact that large-batch methods are inclined to converge
to sharp minimizers of the loss function f , which are characterized by large positive
eigenvalues of ∇2f(x) (i.e. strong positive curvature), as illustrated in Figure 21. The large
sensitivity of f in the neighborhood of a sharp minimizer negatively impacts the ability to
generalize on new data.

On the other hand, small batches often yield flat minimizers, marked by small
positive eigenvalues of ∇2f(x), leading to enhanced out-of-sample performance (KESKAR
et al., 2017). The downside of using a limited batch size is that the convergence to a global
optimum may not occur, and the path towards convergence to a local minimum may be
noisy due to the constant update of the gradient with few observations, compromising

100 Chapter 4. Data and Methodology

Figure 21 – Conceptual sketch of flat and sharp minima. The loss function is denoted by
f(x). Observe that using the estimated sharp minimum of the training function
leads to a substantially higher value of f using the test set. In contrast, the
difference between the training and test values are much more modest for a
flat minimum. Source: Keskar et al. (2017).

accuracy, as argued by Goodfellow, Bengio and Courville (2016). It is worth stressing
that the minimization of the loss functions of neural networks is typically a non-convex
optimization problem, meaning that multiple local minima usually exist and the path
towards the global minimum may be nontrivial to locate.

Hence, finding an equilibrium between these objectives (generalization vs. smooth,
fast convergence) by specifying an appropriate batch size is crucial, because it guarantees
convergence in a decent speed while benefiting from the noise to escape from basins of
attraction of sharp minima towards flatter minima that have better generalization power,
as argued by Hoffer, Hubara and Soudry (2017). In addition, the noise added by small
batches can promote a regularizing effect.

In the simulations carried out in this work, the batch size was defaulted to 32, a
value in the range of 32 to 512 frequently considered in practice to balance the trade-off
between convergence and generalization power (KESKAR et al., 2017). It should be noted
that batch sizes are usually defined as powers of 2 to offer better run time, especially
when using GPUs (GOODFELLOW; BENGIO; COURVILLE, 2016). Thus, the next value
after 32 would be 64, which is regarded as too large for the dataset of 504 observations
considered in this work.

Indeed, in the experiments conducted by Keskar et al. (2017), large batches were
constructed using 10% of the training data. Here, this dataset (including the share used
for validation) is formed by 403 observations, implying that a batch size of 64 would
correspond to approximately 16% of the training data and, thus, would be far too large.
In fact, even a batch size of 32 is somewhat large, as indicated by this analysis. However, a
smaller batch would render the gradient estimate too unstable and inaccurate, damaging
the learning ability of the network. For the sake of completeness, although not reported

4.5. Training and Optimization of Neural Networks 101

here, other sizes were tested, yielding poor outcomes with respect to a batch size of 32.

0 10 20 30 40 50 60 70

Epoch

0.4

0.6

0.8

1.0

1.2

M
S

E

MSE of the ConvLSTM as a Function of the Number of Epochs

Training Set

Test Set

Figure 22 – Evolution of the MSE of the ConvLSTM trained in Figure 20, but now trained
with a batch size of 256. The MSE curve is naturally smoother, since the
estimates of the gradient are more precise. However, due to the deteriorated
generalization power, even after 70 epochs, the out-of-sample MSE is still
above the minimum reached when the network was trained with a batch size
of 32. The same happens with the in-sample values.

103

5 RESULTS

In this section, the results of the analysis of the out-of-sample relative performance
of the model proposed for inflation forecasting are presented. Initially, we analyze the US
CPI time series, identifying stylized facts. Later, the performance metrics are introduced
and a method for building confidence intervals is discussed. Next, the main results are
shown and debated.

5.1 Stylized Facts in Inflation Time Series

As a background to the discussion of the performance of the models tested, we
describe the empirical properties of the inflation time series. The first difference of the log
values is exhibited in Figure 23. The profile suggests that, after the transformation, no
persistence remains and, thus, the series does not have unit roots, which can be confirmed
via the Augmented Dickey-Fuller (ADF) test. Also, inflation seems nonstationary due to
time-varying volatility, which is shown in Figure 24.

1980 1985 1990 1995 2000 2005 2010 2015 2020

Date

−6

−4

−2

0

2

4

Figure 23 – Normalized first difference of the log prices, as measured by the US CPI
(CPIAUCSL series in the FRED database).

Moreover, as the Q-Q plot in Figure 25 shows, the hypothesis of normality may be
immediately rejected, and, even though the results are not reported here, this conclusion
can be confirmed by a simple Jarque-Bera test. Indeed, extreme observations have been
reported far more often than implied by the normal distribution, signaling that the true

104 Chapter 5. Results

1980 1985 1990 1995 2000 2005 2010 2015 2020

Date

0.5

1.0

1.5

2.0

2.5

Figure 24 – Standard deviation of the first difference of the log prices, as measured by
the US CPI (CPIAUCSL series in the FRED database). Computed using a
12-month rolling window.

distribution must have positive excess kurtosis. Such conclusion is consistent with Monache
and Petrella (2017). These observation have typically occurred during turbulent periods,
such as the late 70s, when the US economy suffered from high and uncontrollable inflation,
and the 2008-09 financial crisis.

The autocorrelation and partial autocorrelation functions of the first difference of
the log inflation are plotted in Figure 26 and Figure 27. Both plots show that lags have
predictive power to explain current inflation. There are no apparent evidence of long-term
memory in the series, despite the fact that the autocorrelation function decays somewhat
slowly and several lags are statistically significant.

Since McCracken and Ng (2016) advise in favor of the use of the second difference
of the log prices, the respective autocorrelation and partial autocorrelation functions
are also displayed in Figure 28 and Figure 29. This additional differencing corrects
the autocorrelation function, which now decays exponentially, leaving few statistically
significant lags. The partial autocorrelation function remains well-behaved.

5.2 Performance Metrics

The criteria adopted to compare the performance of each model is comprised by five
metrics computed for the set of out-of-sample predictions. These metrics are well-known in

5.2. Performance Metrics 105

−6 −4 −2 0 2 4

Theoretical Quantiles

−6

−4

−2

0

2

4

S
am

p
le

Q
u

an
ti

le
s

Figure 25 – Q-Q plot of the normalized first difference of the log prices, as measured by
the US CPI (CPIAUCSL series in the FRED database).

0 5 10 15 20 25

Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation Function

Figure 26 – Autocorrelation function of the first difference of the log prices, as measured
by the US CPI. Confidence interval (shaded area) is computed using Bartlett’s
formula with a significance level of 5%.

106 Chapter 5. Results

0 5 10 15 20 25

Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Partial Autocorrelation Function

Figure 27 – Partial autocorrelation function of the first difference of the log prices, as
measured by the US CPI. Confidence interval (shaded area) is computed using
Bartlett’s formula with a significance level of 5%.

0 5 10 15 20 25

Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation Function

Figure 28 – Autocorrelation function of the log inflation series after twice-differencing.
Confidence interval (shaded area) is computed using Bartlett’s formula with a
significance level of 5%.

5.2. Performance Metrics 107

0 5 10 15 20 25

Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Partial Autocorrelation Function

Figure 29 – Partial autocorrelation function of the log inflation series after twice-
differencing. Confidence interval (shaded area) is computed using Bartlett’s
formula with a significance level of 5%.

the machine learning literature and many empirical studies resort to them as a means to
compare different models; for instance, see Atsalakis and Valavanis (2009) and Chong, Han
and Park (2017). In the next expressions, n is the number of predictions, yi, i = 1, 2, . . . , n,
are the observed values, and ŷi are the forecast values.

1. Mean squared error (MSE): corresponds to the average of the squared prediction
errors.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (5.1)

2. Mean absolute error (MAE): equals the average absolute prediction error.

MAE = 1
n

n∑
i=1
|yi − ŷi| (5.2)

3. Root mean squared error: it is simply the square root of the MSE.

RMSE =
√
MSE (5.3)

4. Mean absolute percentage error (MAPE): it is equivalent to the average absolute
relative prediction error.

MAPE = 1
n

n∑
i=1

∣∣∣∣∣yi − ŷiyi

∣∣∣∣∣ (5.4)

108 Chapter 5. Results

5. Cosine similarity (CS): is a measure of similarity between any two non-zero vectors
based on the canonical inner product of R2. Mathematically, corresponds to the
cosine of the angle between these two vectors. Hence, it lies in the range [−1, 1] and
is analogous to the concept of correlation.

CS =
∑n
i=1 yiŷi√

(∑n
i=1 y

2
i) (∑n

i=1 ŷ
2
i)

(5.5)

5.3 Confidence Intervals and Hypothesis Testing

In line with chapter 4, where data and methodology are debated, the use of cross-
validation and Monte Carlo simulation permitted gauging multiple times the out-of-sample
performance of the proposed model and its benchmarks. In that sense, 100 simulations, to-
gether with a 10-fold cross-validation, conceived 1.000 measurements, with which confidence
intervals and hypothesis testing could be conducted.

Intrinsically, the theoretical distribution of the performance metrics listed in the
previous subsection, although unknown, most certainly depart from the normal distribution.
One reason for this deviation is that these metrics are truncated. For example, MSE and
MAE are always greater than 0. Hence, the conventional formulas for confidence intervals
and hypothesis testing for normally distributed variables cannot be reliably employed here.

A method to effectively overcome the aforementioned challenge entails kernel density
estimation (KDE). Briefly, KDE is a nonparametric method to estimate the probability
distribution function of a random variable from which a sample of realizations is available.
Let (x1, . . . , xn) be a i.i.d. sample of size n drawn from a random variable with unknown
density f . The kernel density estimator of f , f̂(x;h), is given by:

f̂(x;h) = 1
nh

n∑
i=1

K
(
x− xi
h

)
(5.6)

where K(·) is a non-negative function denominated kernel and h > 0 is the bandwidth,
which acts as a smoothing parameter. Although other functions exist in the literature, the
Gaussian kernel is a popular choice in many cases; see James et al. (2013). The bandwidth
h can be calibrated empirically. A rule-of-thumb is provided by Silverman (1986), which is
given by:

h =
(

4σ̂5

3n

)1/5

≈ 1.06σ̂n−1/5 (5.7)

where σ̂ is the estimated standard deviation.
Through the estimate produced by the KDE, confidence intervals are built by

numerically integrating f̂(x;h) to find the cumulative distribution function. Numerical
integration is relatively simple in this context due to the fact that the estimate is a
continuous function. Basic algorithms, such as the composite trapezoid rule, perform
decently here. It is worth highlighting that, in the analysis discussed in the next subsections,
all calculation were carried out using a significance level of 5%.

5.4. Empirical Analysis and Discussion 109

5.4 Empirical Analysis and Discussion

Initially, the discussion begins by analyzing the individual results exhibited by the
ConvLSTM model. Figure 30 and Figure 31 display the empirical probability distribution
and the boxplot of the MSE and MAE metrics, respectively. It is possible to see that,
across simulations, the performance of the model naturally oscillates, but within a tight
range, and never reaching high loss levels. Indeed, as it is revealed in the next tables, the
ConvLSTM produces losses constrained to a lower confidence interval than its benchmarks
for the most relevant horizons.

0

2

4

6

8

10

12

D
en

si
ty

ConvLSTM

Kernel

Histogram

0.05 0.10 0.15 0.20 0.25 0.30

MSE

Figure 30 – Histogram (upper panel, normalized) and boxplot (bottom panel) of the MSE
of the ConvLSTM model proposed. The kernel density estimation was carried
out using a Gaussian kernel.

The next tables contain the out-of-sample performance of each model fitted according
to the methodology detailed in chapter 4. Firstly, Table 3 presents the descriptive statistics
of the out-of-sample MSE for all forecasting horizons (1, 2, 3, 6, and 12 months ahead) as
well as for the cumulative forecasts over 3, 6, and 12 months. The ranks according to the
average MSE, the confidence intervals, and the average MSE reduction delivered by each
model with respect to the random walk predictions are shown in Table 4, Table 5, and
Table 6, respectively.

110 Chapter 5. Results

0

2

4

6

8

10

12

D
en

si
ty

ConvLSTM

Kernel

Histogram

0.05 0.10 0.15 0.20 0.25 0.30

MAE

Figure 31 – Histogram (upper panel, normalized) and boxplot (bottom panel) of the MSE
of the ConvLSTM model proposed. The kernel density estimation was carried
out using a Gaussian kernel.

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all forecasting
horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts
over 3, 6, and 12 months. Throughout this section, the notation used to designate
each model works as follows: “MLP” refers to the multi-layer perceptron; “RW”
is the random walk; “Ridge CV”, “LASSO CV”, and “Enet CV” are the Ridge,
LASSO, and Elastic Net regressions with parameters chosen via cross-validation;
“BRidge” is the Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA”
is the moving average model suggested by Atkeson and Ohanian (2001).

Model MSE 1 2 3 6 12 3M 6M 12M
LSTM Min. 0.14 0.30 0.40 0.37 0.39 0.24 0.28 0.30

Q1 0.24 0.46 0.50 0.50 0.51 0.37 0.47 0.41
Median 0.32 0.51 0.55 0.55 0.57 0.42 0.55 0.49
Q3 0.40 0.60 0.60 0.64 0.62 0.49 0.68 0.57
Max. 0.76 1.12 0.96 1.48 1.15 0.73 1.21 1.15

ConvLSTM Min. 0.09 0.31 0.39 0.39 0.43 0.22 0.27 0.18
Q1 0.15 0.40 0.44 0.45 0.46 0.30 0.39 0.29
Median 0.17 0.42 0.45 0.46 0.46 0.33 0.43 0.34
Q3 0.19 0.44 0.46 0.46 0.47 0.37 0.50 0.40

5.4. Empirical Analysis and Discussion 111

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all forecasting
horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts
over 3, 6, and 12 months. Throughout this section, the notation used to designate
each model works as follows: “MLP” refers to the multi-layer perceptron; “RW”
is the random walk; “Ridge CV”, “LASSO CV”, and “Enet CV” are the Ridge,
LASSO, and Elastic Net regressions with parameters chosen via cross-validation;
“BRidge” is the Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA”
is the moving average model suggested by Atkeson and Ohanian (2001).

Model MSE 1 2 3 6 12 3M 6M 12M
Max. 0.25 0.47 0.47 0.47 0.48 0.59 0.86 0.62

MLP Min. 0.75 0.86 0.88 0.89 0.93 0.88 0.90 0.99
Q1 0.92 1.10 1.10 1.10 1.09 1.05 1.09 1.11
Median 0.99 1.16 1.16 1.16 1.18 1.11 1.15 1.17
Q3 1.07 1.22 1.21 1.25 1.25 1.17 1.24 1.24
Max. 1.31 1.36 1.34 1.48 1.48 1.32 1.42 1.43

RW Min. 1.53 1.52 1.60 1.51 1.38 1.46 1.46 1.48
Q1 1.89 1.84 1.87 1.88 1.81 1.90 1.94 1.91
Median 2.04 1.99 1.99 2.05 1.97 2.01 2.06 2.07
Q3 2.15 2.11 2.16 2.19 2.18 2.14 2.19 2.24
Max. 2.54 2.55 2.61 2.54 2.66 2.43 2.53 2.62

Ridge CV Min. 0.66 0.88 0.83 0.80 0.82 0.87 0.95 0.94
Q1 0.80 0.99 0.99 0.99 0.97 0.97 0.99 0.99
Median 0.85 1.01 1.02 1.03 1.03 0.99 1.00 1.00
Q3 0.89 1.02 1.03 1.04 1.07 1.01 1.02 1.01
Max. 1.30 1.07 1.07 1.11 1.18 1.19 1.20 1.15

BRidge Min. 0.61 0.94 0.85 0.87 0.85 0.83 0.88 0.94
Q1 0.78 1.03 1.03 1.03 1.02 0.97 1.00 1.02
Median 0.85 1.07 1.08 1.08 1.10 1.01 1.04 1.05
Q3 0.91 1.11 1.11 1.14 1.15 1.07 1.10 1.11
Max. 1.20 1.26 1.23 1.32 1.36 1.21 1.26 1.26

LASSO CV Min. 0.68 0.84 0.84 0.86 0.81 0.88 0.95 0.95
Q1 0.78 1.00 1.00 0.99 0.98 0.96 1.00 1.00
Median 0.81 1.01 1.01 1.02 1.03 1.00 1.00 1.00
Q3 0.87 1.01 1.02 1.04 1.07 1.00 1.00 1.00
Max. 1.08 1.09 1.12 1.15 1.22 1.07 1.08 1.05

BLASSO Min. 0.68 0.84 0.83 0.79 0.81 0.84 0.94 0.98
Q1 0.78 1.00 0.99 0.99 0.97 0.96 0.99 0.99
Median 0.83 1.01 1.01 1.02 1.02 0.98 1.00 1.00
Q3 0.90 1.01 1.02 1.04 1.07 1.00 1.00 1.00

112 Chapter 5. Results

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all forecasting
horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts
over 3, 6, and 12 months. Throughout this section, the notation used to designate
each model works as follows: “MLP” refers to the multi-layer perceptron; “RW”
is the random walk; “Ridge CV”, “LASSO CV”, and “Enet CV” are the Ridge,
LASSO, and Elastic Net regressions with parameters chosen via cross-validation;
“BRidge” is the Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA”
is the moving average model suggested by Atkeson and Ohanian (2001).

Model MSE 1 2 3 6 12 3M 6M 12M
Max. 1.03 1.03 1.03 1.06 1.13 1.12 1.05 1.04

Enet CV Min. 0.49 0.84 0.83 0.78 0.80 0.83 0.91 0.91
Q1 0.71 0.98 0.98 0.98 0.95 0.93 0.96 0.97
Median 0.76 1.00 1.00 1.01 1.01 0.96 0.98 0.99
Q3 0.83 1.01 1.01 1.03 1.06 0.98 1.00 1.00
Max. 0.97 1.01 1.02 1.05 1.13 1.00 1.00 1.00

SVR Min. 0.83 0.86 0.83 0.81 0.81 0.90 0.89 0.94
Q1 0.90 1.01 1.01 1.00 1.00 0.97 0.99 1.00
Median 0.92 1.03 1.03 1.05 1.06 0.99 1.02 1.03
Q3 0.94 1.06 1.05 1.08 1.10 1.02 1.04 1.06
Max. 0.99 1.14 1.14 1.16 1.35 1.08 1.17 1.20

RF Min. 0.75 0.92 0.89 0.87 0.84 0.87 0.94 0.93
Q1 0.87 1.05 1.04 1.05 1.03 1.01 1.02 1.02
Median 0.93 1.09 1.09 1.10 1.10 1.05 1.05 1.07
Q3 1.00 1.13 1.13 1.15 1.17 1.08 1.10 1.10
Max. 1.21 1.36 1.27 1.30 1.47 1.15 1.24 1.22

BART Min. 0.73 0.91 0.85 0.86 0.83 0.88 0.92 0.92
Q1 0.86 1.01 1.02 1.02 1.02 0.96 0.98 1.00
Median 0.91 1.05 1.06 1.07 1.08 1.00 1.01 1.02
Q3 0.96 1.08 1.10 1.11 1.13 1.04 1.04 1.04
Max. 1.23 1.16 1.27 1.27 1.35 1.12 1.14 1.13

Bagging Min. 0.80 0.97 0.89 0.87 0.94 0.90 0.91 0.95
Q1 0.94 1.12 1.08 1.08 1.10 1.05 1.05 1.05
Median 0.99 1.16 1.14 1.15 1.17 1.10 1.09 1.12
Q3 1.06 1.21 1.21 1.21 1.23 1.15 1.14 1.17
Max. 1.31 1.42 1.41 1.32 1.54 1.28 1.40 1.27

kNN Min. 0.95 0.86 0.90 0.85 0.88 0.92 0.92 0.88
Q1 0.98 1.00 1.00 1.01 1.00 1.00 1.01 1.00
Median 1.00 1.03 1.04 1.05 1.05 1.02 1.03 1.03
Q3 1.02 1.07 1.07 1.07 1.11 1.05 1.05 1.06

5.4. Empirical Analysis and Discussion 113

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all forecasting
horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts
over 3, 6, and 12 months. Throughout this section, the notation used to designate
each model works as follows: “MLP” refers to the multi-layer perceptron; “RW”
is the random walk; “Ridge CV”, “LASSO CV”, and “Enet CV” are the Ridge,
LASSO, and Elastic Net regressions with parameters chosen via cross-validation;
“BRidge” is the Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA”
is the moving average model suggested by Atkeson and Ohanian (2001).

Model MSE 1 2 3 6 12 3M 6M 12M
Max. 1.07 1.14 1.14 1.17 1.26 1.12 1.11 1.14

Huber Min. 0.67 1.68 1.51 1.54 1.54 1.42 1.38 1.55
Q1 0.93 1.99 2.03 1.98 2.01 1.67 1.88 1.92
Median 1.04 2.18 2.25 2.32 2.20 1.85 2.04 2.14
Q3 1.19 2.42 2.43 2.55 2.52 2.04 2.25 2.44
Max. 1.49 3.22 3.29 3.28 3.19 2.45 2.93 2.97

Theil-Sen Min. 0.67 1.77 1.51 1.66 1.59 1.46 1.45 1.62
Q1 0.94 2.08 2.10 2.14 2.11 1.71 1.93 1.97
Median 1.04 2.31 2.33 2.44 2.33 1.90 2.09 2.19
Q3 1.20 2.55 2.58 2.68 2.60 2.11 2.30 2.52
Max. 1.53 3.44 3.49 3.49 3.36 2.57 2.97 3.02

Factors Min. 0.74 0.87 0.88 0.87 0.86 0.94 0.93 0.90
Q1 0.93 1.01 1.01 1.02 1.02 1.01 1.01 1.01
Median 1.01 1.04 1.05 1.07 1.08 1.06 1.05 1.03
Q3 1.08 1.08 1.08 1.11 1.13 1.10 1.11 1.08
Max. 1.36 1.28 1.24 3.69 1.29 1.27 1.42 2.89

GARCH Min. 0.24 0.37 0.38 0.35 0.39 0.50 0.45 0.39
Q1 0.49 0.72 0.83 0.79 0.82 0.67 0.60 0.64
Median 0.64 0.93 1.05 1.11 1.09 0.72 0.70 0.70
Q3 0.89 1.34 1.52 1.52 1.46 0.82 0.80 0.83
Max. 2.19 3.09 3.31 3.67 3.93 1.20 1.30 1.38

VECM Min. 0.38 0.83 0.99 0.84 1.10 0.53 0.49 0.36
Q1 0.63 1.28 1.45 1.27 1.42 0.78 0.79 0.77
Median 0.70 1.44 1.63 1.48 1.57 0.91 0.96 1.13
Q3 0.77 1.65 1.94 1.70 1.82 1.05 1.15 1.38
Max. 1.06 2.23 2.95 2.43 3.31 1.51 1.59 2.08

SETAR Min. 0.55 0.71 0.79 0.75 0.65 1.04 0.98 0.67
Q1 0.80 0.99 1.11 1.04 1.04 1.27 1.33 1.53
Median 0.93 1.16 1.27 1.20 1.17 1.42 1.55 1.81
Q3 1.06 1.33 1.48 1.36 1.41 1.59 1.74 2.01

114 Chapter 5. Results

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all forecasting
horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts
over 3, 6, and 12 months. Throughout this section, the notation used to designate
each model works as follows: “MLP” refers to the multi-layer perceptron; “RW”
is the random walk; “Ridge CV”, “LASSO CV”, and “Enet CV” are the Ridge,
LASSO, and Elastic Net regressions with parameters chosen via cross-validation;
“BRidge” is the Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA”
is the moving average model suggested by Atkeson and Ohanian (2001).

Model MSE 1 2 3 6 12 3M 6M 12M
Max. 1.37 1.75 2.10 1.83 2.01 1.96 2.23 2.66

MA Min. 0.65 0.78 0.76 0.71 0.71 0.78 0.72 0.67
Q1 0.84 1.01 0.99 0.92 0.92 1.01 0.93 0.88
Median 0.93 1.13 1.12 1.06 1.07 1.12 1.06 1.02
Q3 1.03 1.27 1.27 1.22 1.24 1.24 1.20 1.19
Max. 1.33 1.64 1.65 1.58 1.62 1.60 1.56 1.55

SARIMA Min. 0.54 0.64 0.75 0.87 0.85 0.49 0.47 0.39
Q1 0.70 0.93 1.02 1.09 1.10 0.67 0.60 0.61
Median 0.77 1.02 1.13 1.24 1.22 0.75 0.69 0.68
Q3 0.82 1.14 1.28 1.35 1.34 0.81 0.78 0.77
Max. 1.05 1.54 1.61 1.82 1.82 1.06 1.05 1.22

ARFIMA Min. 0.51 0.62 0.88 0.82 0.82 0.45 0.46 0.44
Q1 0.69 0.83 1.02 1.08 1.08 0.62 0.63 0.62
Median 0.75 0.95 1.14 1.19 1.21 0.70 0.71 0.71
Q3 0.82 1.11 1.38 1.34 1.35 0.79 0.81 0.81
Max. 1.12 1.43 1.76 1.92 1.83 1.09 1.00 1.03

GradBoost Min. 0.75 0.92 0.92 0.92 0.90 0.91 0.90 0.97
Q1 0.84 1.07 1.09 1.09 1.07 1.03 1.03 1.05
Median 0.92 1.13 1.16 1.14 1.15 1.07 1.08 1.10
Q3 0.98 1.19 1.20 1.20 1.23 1.12 1.13 1.15
Max. 1.13 1.39 1.35 1.37 1.45 1.27 1.27 1.37

AdaBoost Min. 0.80 0.91 0.86 0.84 0.80 0.90 0.96 0.94
Q1 0.88 1.02 1.03 1.03 1.02 0.99 1.02 1.02
Median 0.93 1.06 1.06 1.07 1.10 1.04 1.06 1.06
Q3 0.97 1.09 1.10 1.10 1.15 1.08 1.09 1.11
Max. 1.10 1.22 1.22 1.24 1.38 1.19 1.30 1.26

Bayes Reg. Min. 0.76 0.96 1.01 1.00 0.98 0.97 0.99 1.00
Q1 0.99 1.22 1.22 1.23 1.24 1.19 1.20 1.23
Median 1.07 1.33 1.32 1.33 1.34 1.30 1.31 1.33
Q3 1.20 1.43 1.42 1.42 1.50 1.40 1.42 1.46

5.4. Empirical Analysis and Discussion 115

Table 3 – Descriptive statistics of the out-of-sample MSE of each model for all forecasting
horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts
over 3, 6, and 12 months. Throughout this section, the notation used to designate
each model works as follows: “MLP” refers to the multi-layer perceptron; “RW”
is the random walk; “Ridge CV”, “LASSO CV”, and “Enet CV” are the Ridge,
LASSO, and Elastic Net regressions with parameters chosen via cross-validation;
“BRidge” is the Bayesian Ridge; “BLASSO” is the Bayesian LASSO; and “MA”
is the moving average model suggested by Atkeson and Ohanian (2001).

Model MSE 1 2 3 6 12 3M 6M 12M
Max. 1.56 1.74 1.95 2.08 2.10 1.90 1.71 1.75

Table 4 – Ranks produced by comparing the models according to their average MSE
through the simulations. The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M
LSTM 2 2 2 2 2 2 2 2
ConvLSTM 1 1 1 1 1 1 1 1
MLP 19 19 18 17 17 20 21 21
RW 26 24 24 24 24 26 24 24
Ridge CV 11 7 6 6 6 11 10 9
BRidge 10 14 12 13 12 13 14 14
LASSO CV 8 6 5 5 5 9 9 8
BLASSO 9 5 4 4 4 8 8 7
Enet CV 7 4 3 3 3 7 6 6
SVR 14 8 7 7 7 10 12 13
RF 18 16 13 14 14 16 17 15
BART 12 11 10 10 10 12 11 11
Bagging 20 20 16 16 16 19 20 20
kNN 21 9 8 8 8 14 13 12
Huber 23 25 25 25 25 24 25 25
Theil-Sen 24 26 26 26 26 25 26 26
Factors 22 12 9 11 11 17 18 16
GARCH 4 15 19 19 18 5 4 5
VECM 3 23 23 23 23 6 7 18
SETAR 17 21 21 20 19 23 23 23
MA 15 17 14 12 9 21 15 10
SARIMA 6 10 17 18 21 4 3 3
ARFIMA 5 3 20 21 20 3 5 4
GradBoost 13 18 15 15 15 18 19 19
AdaBoost 16 13 11 9 13 15 16 17

116 Chapter 5. Results

Table 4 – Ranks produced by comparing the models according to their average MSE
through the simulations. The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M
Bayes Reg. 25 22 22 22 22 22 22 22

Table 5 – Confidence intervals for the MSE. For each model, the first line contains the
average MSE and the second one, the limits of the interval. Some forecasting
periods were omitted for the sake of simplicity. The results for these additional
periods are similar to those reported in the table.

Model 1 3 3M 6M 12M
LSTM 0.33 0.55 0.44 0.59 0.52

(0.13, 0.64) (0.40, 0.77) (0.27, 0.69) (0.36, 1.01) (0.31, 0.89)
ConvLSTM 0.17 0.44 0.33 0.46 0.36

(0.12, 0.25) (0.39, 0.47) (0.23, 0.47) (0.29, 0.73) (0.21, 0.59)
MLP 1.00 1.16 1.11 1.16 1.18

(0.81, 1.24) (0.93, 1.33) (0.93, 1.30) (0.99, 1.38) (1.02, 1.37)
RW 2.02 2.01 2.02 2.06 2.08

(1.61, 2.45) (1.63, 2.46) (1.69, 2.40) (1.62, 2.46) (1.65, 2.54)
Ridge CV 0.86 1.01 1.00 1.01 1.00

(0.70, 1.12) (0.90, 1.06) (0.92, 1.14) (0.96, 1.12) (0.97, 1.07)
BRidge 0.85 1.07 1.01 1.05 1.06

(0.67, 1.08) (0.93, 1.19) (0.86, 1.18) (0.91, 1.22) (0.96, 1.19)
LASSO CV 0.83 1.00 0.99 1.00 1.00

(0.69, 1.05) (0.90, 1.06) (0.90, 1.06) (0.96, 1.07) (0.97, 1.05)
BLASSO 0.84 1.00 0.98 1.00 1.00

(0.69, 1.00) (0.91, 1.03) (0.87, 1.04) (0.98, 1.02) (0.99, 1.02)
Enet CV 0.77 0.99 0.95 0.98 0.98

(0.55, 0.96) (0.89, 1.03) (0.85, 1.00) (0.92, 1.01) (0.92, 1.01)
SVR 0.92 1.03 0.99 1.02 1.03

(0.85, 0.99) (0.91, 1.11) (0.92, 1.06) (0.93, 1.11) (0.95, 1.14)
RF 0.94 1.08 1.04 1.06 1.07

(0.80, 1.13) (0.94, 1.22) (0.92, 1.14) (0.95, 1.21) (0.94, 1.19)
BART 0.91 1.06 1.00 1.01 1.02

(0.77, 1.06) (0.93, 1.22) (0.89, 1.11) (0.94, 1.11) (0.95, 1.11)
Bagging 1.00 1.14 1.10 1.10 1.11

(0.84, 1.22) (0.98, 1.32) (0.94, 1.24) (0.96, 1.23) (0.98, 1.27)
kNN 1.00 1.04 1.02 1.03 1.03

(0.96, 1.06) (0.92, 1.12) (0.95, 1.11) (0.96, 1.10) (0.96, 1.13)
Huber 1.06 2.25 1.87 2.07 2.18

5.4. Empirical Analysis and Discussion 117

Table 5 – Confidence intervals for the MSE. For each model, the first line contains the
average MSE and the second one, the limits of the interval. Some forecasting
periods were omitted for the sake of simplicity. The results for these additional
periods are similar to those reported in the table.

Model 1 3 3M 6M 12M
(0.73, 1.42) (1.67, 3.11) (1.43, 2.40) (1.58, 2.75) (1.60, 2.89)

Theil-Sen 1.07 2.36 1.92 2.13 2.24
(0.73, 1.45) (1.76, 3.28) (1.48, 2.45) (1.60, 2.81) (1.64, 2.98)

Factors 1.02 1.04 1.06 1.06 1.07
(0.78, 1.31) (0.89, 1.19) (0.96, 1.21) (0.95, 1.21) (0.92, 1.25)

GARCH 0.71 1.19 0.75 0.71 0.73
(0.27, 1.39) (0.43, 2.40) (0.51, 1.10) (0.47, 1.05) (0.46, 1.07)

VECM 0.71 1.71 0.92 0.98 1.10
(0.47, 0.95) (1.09, 2.69) (0.59, 1.30) (0.53, 1.48) (0.38, 1.94)

SETAR 0.94 1.30 1.44 1.56 1.77
(0.64, 1.28) (0.82, 1.94) (1.07, 1.93) (1.11, 2.15) (0.92, 2.44)

MA 0.93 1.12 1.12 1.06 1.02
(0.66, 1.20) (0.82, 1.52) (0.76, 1.55) (0.72, 1.51) (0.70, 1.50)

SARIMA 0.77 1.15 0.75 0.70 0.70
(0.58, 0.97) (0.81, 1.55) (0.53, 1.02) (0.51, 0.98) (0.43, 1.00)

ARFIMA 0.75 1.20 0.71 0.72 0.72
(0.57, 1.02) (0.87, 1.64) (0.51, 0.96) (0.49, 0.96) (0.48, 1.03)

GradBoost 0.92 1.14 1.07 1.08 1.10
(0.75, 1.12) (0.93, 1.32) (0.94, 1.22) (0.95, 1.23) (0.98, 1.27)

AdaBoost 0.93 1.06 1.04 1.06 1.07
(0.82, 1.05) (0.94, 1.18) (0.92, 1.16) (0.96, 1.18) (0.96, 1.20)

Bayes Reg. 1.10 1.32 1.31 1.32 1.35
(0.79, 1.51) (1.05, 1.55) (1.04, 1.70) (1.07, 1.67) (1.06, 1.67)

Table 6 – Average MSE reduction delivered by each model with respect to random walk.
Negative values mean that the model increased the MSE. The winning model is
highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M
LSTM 83.6% 72.8% 72.4% 71.6% 70.9% 78.4% 71.4% 75.2%
ConvLSTM 91.5% 79.0% 77.9% 77.9% 77.0% 83.4% 77.8% 82.8%
MLP 50.5% 41.5% 42.5% 42.3% 40.8% 44.8% 43.7% 43.4%
RW 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Ridge CV 57.5% 49.3% 49.9% 49.9% 49.0% 50.6% 51.3% 51.7%
BRidge 57.7% 46.0% 46.9% 46.6% 45.7% 49.8% 49.1% 48.9%

118 Chapter 5. Results

Table 6 – Average MSE reduction delivered by each model with respect to random walk.
Negative values mean that the model increased the MSE. The winning model is
highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M
LASSO CV 58.8% 49.3% 50.3% 50.4% 49.1% 51.2% 51.4% 51.8%
BLASSO 58.5% 49.5% 50.3% 50.5% 49.3% 51.6% 51.7% 51.9%
Enet CV 62.0% 50.1% 50.8% 50.9% 50.0% 53.0% 52.7% 52.7%
SVR 54.5% 48.1% 48.9% 49.1% 47.5% 50.7% 50.8% 50.4%
RF 53.3% 44.8% 46.1% 45.9% 45.0% 48.4% 48.6% 48.8%
BART 55.0% 47.1% 47.4% 47.2% 46.2% 50.4% 50.9% 51.1%
Bagging 50.4% 41.4% 43.2% 42.5% 41.5% 45.6% 46.9% 46.5%
kNN 50.3% 47.9% 48.6% 48.4% 47.4% 49.3% 50.2% 50.4%
Huber 47.4% -12.5% -11.7% -11.9% -13.4% 7.5% -0.3% -4.9%
Theil-Sen 47.0% -18.4% -17.5% -17.7% -19.0% 4.8% -3.0% -7.6%
Factors 49.6% 46.9% 48.2% 47.0% 46.2% 47.3% 48.5% 48.7%
GARCH 65.0% 46.0% 41.0% 40.1% 39.3% 63.0% 65.5% 64.8%
VECM 65.0% 25.7% 15.1% 17.2% 17.4% 54.4% 52.7% 47.3%
SETAR 53.6% 41.1% 35.3% 40.0% 38.6% 28.6% 24.2% 15.1%
MA 54.0% 43.1% 44.2% 46.8% 46.4% 44.4% 48.8% 51.2%
SARIMA 62.0% 47.8% 43.0% 40.7% 38.2% 63.0% 66.0% 66.6%
ARFIMA 62.7% 51.1% 40.5% 39.3% 38.6% 64.7% 65.3% 65.2%
GradBoost 54.6% 42.8% 43.3% 42.9% 42.2% 46.8% 47.5% 47.0%
AdaBoost 54.0% 46.6% 47.2% 47.2% 45.6% 48.4% 48.7% 48.6%
Bayes Reg. 45.5% 32.9% 34.3% 33.9% 31.4% 35.2% 35.9% 35.2%

Comparing the median MSE across the models, one infers that the winning model is
the ConvLSTM coupled with a variational autoencoder for dimension reduction. Since
this conclusion stems from a significant amount of simulations, with a rigorous division
of the sample into training, validation, and test windows, the accomplishments of the
ConvLSTM model are fairly sound and robust.

In fact, the superiority is statistically significant at 5% in most horizons considered
and in comparison with most benchmarks, as confirmed by the confidence intervals
computed. Usually, for more distant horizons, the intervals become wider due to the higher
uncertainty and, thus, it is impossible to reject the null hypothesis that the models produce
equivalent out-of-sample performance. Also, the standard LSTM model, despite exhibiting
higher loss, is not far away from the ConvLSTM model, making it difficult to reject the
null.

Still, given that the underlying properties of the ConvLSTM model confer enhanced
flexibility to capture inflation dynamics and the strong results for short horizons, it is

5.4. Empirical Analysis and Discussion 119

reasonable to claim that it should be superior in long horizons as well and that is yields
more solid results relatively to the LSTM model. Furthermore, it must be mentioned that,
in most machine learning studies, the direct comparison of the median (or average) MSE
is sufficient to claim the superiority of a model and, using this criterion, the ConvLSTM is
a indisputable winner.

By contrast, the random walk model is the worst performer in some forecasting
windows, while Theil-Sen and Huber robust regressions, together with Bayesian linear
regression, occupy the lowest ranks in other cases. An immediate conclusion is that, given
the weak accuracy exhibited by the random walk, even simple econometric models are
capable of enhancing out-of-sample predictions, and Table 6 confirms that the gains are
expressive. Therefore, although inflation forecasting remains a challenging macroecono-
metric problem, the results shown here demonstrate that informative predictions can be
generated, confronting other studies that claim the impossibility to beat random walk or
naive moving averages. In particular, the ConvLSTM model generate loss reductions as
large as 91.5% for some horizons.

In addition, corroborating the prior statement, the simple moving average model of
Atkeson and Ohanian (2001) is also defeated by the ConvLSTM model and some of the
benchmarks, proving that, in spite of the poor performance displayed by the standard
linear Phillips curve in practice, inflation, although nonlinear, is predictable. However,
accurate forecasts demand sophisticated nonlinear models and an extensive dataset of
macroeconomic variables, explaining why some of the past studies on the subject failed to
design reliable prediction models.

Analyzing the full picture, some interesting patterns emerge, and contrasting with
the results reported by Medeiros et al. (2019) is fruitful due to the fact that they applied
the same dataset as ours in their numerical exercise. Overall, corroborating their findings,
it is also identified that machine learning methods and models that impose sparsity and/or
regularization perform satisfactorily and provide substantial improvements with respect to
the random walk.

However, also in accordance with Medeiros et al. (2019), deep learning models do not
perform equally. Indeed, the multilayer perceptron delivers lackluster results, consistently
with the findings by Medeiros et al. (2019), who train a deep neural network with three
hidden layers and 32, 16, and 8 ReLU neurons in each layer, respectively, and observe that
such model is outperformed by Random Forests, for instance. In our view, such behavior
is explained by the fact that, unlike LSTM and ConvLSTM, the MLP does not have an
architecture designed to capture temporal dependencies in the input data. Therefore, it
requires an excessive number of parameters to adjust to the inputs, leading to overfitting
and, thus, poor out-of-sample performance.

The performance of the factor model offers interesting insights. The mixed results
are most likely explained by a missing structure of linear factors in the data, consistently

120 Chapter 5. Results

with the findings reported by Medeiros et al. (2019). This conclusion is also supported by
the fragile accuracy of other standard linear models added as benchmarks and justifies the
use of deep learning to identify these nonlinear interactions between factors.

Remarkably, in a related study using financial data and autoencoders, Gu, Kelly
and Xiu (2020) find that nonlinearities are crucial for extracting factors and improving
their explanatory power. Given the nature and similarities between their dataset and the
one considered in this work, it is reasonable to believe that nonlinearities are relevant to
explain the findings herein. The reported benefits of adding a variational autoencoder also
reinforce this view.

Turning the attention to the nonlinearities in inflation per se, the superiority of
models such as ConvLSTM, LSTM and Random Forests with respect to the random walk
is consistent with the claim that inflation is governed by a nonlinear stochastic process,
ruling out the possibility of modeling inflation with the standard, linear Phillips curve.
However, LASSO, Ridge and Elastic Net, which are linear models, also delivered decent
performance, although inferior to ConvLSTM and LSTM.

This means that, despite the evidence of (unknown) nonlinearity, even flexible,
nonparametric models such as the Random Forest may fail to beat more simple ones. Hence,
one may infer that the nonlinear relationship between inflation and other macroeconomic
variables is far from trivial, and such complexity can only be effectively addressed by
deep learning models, which are capable of learning them with supervision. Moreover, the
outcomes of these models indicate that variable selection play an important role when
large datasets are employed, which is the case here. Ultimately, it also another evidence
that conventional linear models should be excluded from practical applications.

A question that immediately arises when adjusting models to time series is whether
the superior performance of a certain model is verified exclusively in a particular time
window, or whether it depends on business cycles or other exogenous variables. The
approach established in this work, based on successive splits of the dataset, conceiving a
diverse collection of training, validation, and test samples with which models are adjusted,
addresses this question. Hence, each model has been trained on different samples, covering
distinct periods of time, and tested on multiple settings as well.

Indeed, inspecting the confidence intervals estimated, all the performance metrics,
including the MSE, unveil a considerable dispersion of results across simulations, meaning
that different periods produce distinct ranks. This conclusion is consistent with those
reported in other papers, such as Kim (1993), signaling the existence of regimes in inflation
data. However, via these intervals, one can statistically claim the superiority of a given
model, and, as the outputs corroborate, the hypothesis that the ConvLSTM network
proposed, coupled with variational autoencoders, outperforms its benchmarks cannot be
rejected.

With the purpose of inspecting how MSE behaves across time, Figure 32 displays

5.4. Empirical Analysis and Discussion 121

the evolution of the MSE for the ConvLSTM. For the benchmarks, the behavior is similar,
justifying the omission of the respective plots. Comparing with Figure 33, it is immediately
noticed a strong, positive correlation between the MSE and the CPI volatility, meaning
that, in periods of greater turbulence, performance seems to deteriorate, which is reasonable.
Still, in the case of the model proposed, even during the 2008-09 crisis, when volatility
reached its peak, the MSE remained under control. For the sake of brevity, the full results
are not reported here, but the ones provided also indicate that the superiority of the
ConvLSTM does not depend on the state of the economy, meaning that it outperforms
both during expansions and recessions, or during periods with high and low uncertainty.

1980 1985 1990 1995 2000 2005 2010 2015 2020

Date

0.0

0.1

0.2

0.3

0.4

M
S

E

Figure 32 – MSE of the ConvLSTM model computed using a 12-month rolling window.

In the framework of machine learning and big data, dimension reduction gains become
explicit when assessing the performance offered by the ConvLSTM model with and without
the variational autoencoder. As the outcomes show, reducing the dimension of the dataset
improves the out-of-sample performance, meaning that redundant information exist in the
time series. In order to confirm that using a nonlinear technique for dimension reduction
provides greater gains than a linear one, the same exercise is conducted, but replacing the
VAE by PCA. The results demonstrate that the combination of VAE and ConvLSTM is
superior to the alternative specification proposed, which is another piece of evidence of
the existence of a nonlinear factor structure in the input data.

In addition to the outcomes presented and debated so far, Table 7, Table 8, Table 9,

122 Chapter 5. Results

1980 1985 1990 1995 2000 2005 2010 2015 2020

Date

0.5

1.0

1.5

2.0

2.5

V
ol

at
il
it

y

Figure 33 – Volatility of the normalized second differences of log prices, as measured by
the CPI, using a 12-month rolling window.

and Table 10 display the MAE computed for each model and the corresponding statistics.
Overall, the conclusions obtained are essentially the same offered by the MSE criterion,
despite the fact that confidence intervals seem wider and losses are higher. Supplementary
metrics, such as RMSE, MAPE and CS, have also been implemented in the routines
mentioned in section 4.4 and can be easily replicated. They are also available upon request.
In summary, these metrics produce results consistent with those discussed so far.

Table 7 – Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M
LSTM Min. 0.29 0.42 0.47 0.49 0.49 0.40 0.43 0.45

Q1 0.40 0.55 0.57 0.57 0.56 0.49 0.55 0.51
Median 0.45 0.58 0.60 0.59 0.61 0.53 0.59 0.57
Q3 0.51 0.63 0.63 0.64 0.64 0.58 0.66 0.63
Max. 0.72 0.84 0.79 1.03 0.91 0.70 0.88 0.86

ConvLSTM Min. 0.25 0.45 0.48 0.50 0.50 0.37 0.40 0.33
Q1 0.30 0.52 0.53 0.54 0.54 0.44 0.50 0.43
Median 0.32 0.53 0.54 0.54 0.54 0.46 0.53 0.46
Q3 0.35 0.54 0.55 0.55 0.55 0.49 0.58 0.50
Max. 0.41 0.56 0.56 0.55 0.56 0.58 0.75 0.60

5.4. Empirical Analysis and Discussion 123

Table 7 – Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M
MLP Min. 0.63 0.71 0.69 0.68 0.67 0.72 0.74 0.78

Q1 0.68 0.76 0.76 0.76 0.77 0.79 0.82 0.86
Median 0.71 0.79 0.79 0.80 0.80 0.82 0.85 0.88
Q3 0.74 0.82 0.82 0.84 0.83 0.85 0.88 0.91
Max. 0.84 0.88 0.87 0.95 0.91 0.91 0.96 0.98

RW Min. 0.91 0.88 0.92 0.93 0.91 0.91 0.93 0.96
Q1 1.02 1.01 1.01 1.02 1.00 1.06 1.08 1.09
Median 1.07 1.05 1.06 1.07 1.05 1.10 1.11 1.13
Q3 1.10 1.09 1.11 1.10 1.11 1.13 1.15 1.16
Max. 1.20 1.18 1.20 1.22 1.28 1.24 1.30 1.25

Ridge CV Min. 0.56 0.64 0.64 0.63 0.63 0.67 0.71 0.74
Q1 0.62 0.69 0.69 0.68 0.69 0.75 0.77 0.80
Median 0.64 0.72 0.71 0.71 0.71 0.77 0.79 0.82
Q3 0.67 0.73 0.73 0.74 0.74 0.79 0.82 0.84
Max. 0.82 0.78 0.78 0.78 0.79 0.84 0.87 0.91

BRidge Min. 0.55 0.67 0.65 0.66 0.66 0.69 0.73 0.74
Q1 0.63 0.72 0.72 0.72 0.72 0.75 0.79 0.81
Median 0.65 0.75 0.74 0.76 0.75 0.78 0.82 0.84
Q3 0.68 0.78 0.77 0.78 0.78 0.80 0.84 0.86
Max. 0.80 0.86 0.83 0.84 0.85 0.86 0.93 0.94

LASSO CV Min. 0.58 0.64 0.65 0.63 0.64 0.68 0.70 0.72
Q1 0.62 0.69 0.69 0.69 0.70 0.74 0.77 0.80
Median 0.64 0.71 0.71 0.71 0.71 0.76 0.79 0.82
Q3 0.66 0.73 0.73 0.74 0.74 0.78 0.82 0.84
Max. 0.76 0.78 0.77 0.79 0.81 0.84 0.88 0.89

BLASSO Min. 0.53 0.64 0.65 0.63 0.64 0.67 0.70 0.72
Q1 0.63 0.69 0.69 0.68 0.69 0.74 0.77 0.80
Median 0.66 0.71 0.71 0.71 0.71 0.76 0.79 0.82
Q3 0.69 0.73 0.73 0.73 0.74 0.78 0.81 0.84
Max. 0.75 0.77 0.77 0.78 0.79 0.83 0.86 0.89

Enet CV Min. 0.55 0.64 0.64 0.64 0.64 0.66 0.70 0.72
Q1 0.60 0.68 0.68 0.68 0.68 0.73 0.76 0.79
Median 0.63 0.71 0.71 0.71 0.71 0.75 0.78 0.81
Q3 0.65 0.73 0.72 0.73 0.73 0.77 0.81 0.83
Max. 0.74 0.77 0.77 0.78 0.79 0.81 0.86 0.87

SVR Min. 0.59 0.64 0.66 0.65 0.65 0.68 0.73 0.74
Q1 0.65 0.70 0.70 0.70 0.70 0.74 0.78 0.80

124 Chapter 5. Results

Table 7 – Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M
Median 0.67 0.73 0.73 0.73 0.73 0.77 0.80 0.83
Q3 0.69 0.75 0.74 0.75 0.75 0.79 0.82 0.85
Max. 0.76 0.81 0.79 0.81 0.83 0.82 0.88 0.90

RF Min. 0.55 0.66 0.67 0.65 0.67 0.69 0.73 0.76
Q1 0.67 0.74 0.72 0.73 0.73 0.76 0.79 0.81
Median 0.69 0.76 0.75 0.76 0.76 0.79 0.82 0.84
Q3 0.71 0.78 0.77 0.78 0.79 0.81 0.84 0.87
Max. 0.79 0.83 0.87 0.87 0.92 0.86 0.92 0.92

BART Min. 0.60 0.64 0.66 0.64 0.66 0.67 0.71 0.74
Q1 0.66 0.71 0.71 0.71 0.72 0.75 0.78 0.80
Median 0.68 0.74 0.74 0.74 0.75 0.77 0.80 0.83
Q3 0.71 0.76 0.76 0.77 0.78 0.79 0.82 0.85
Max. 0.80 0.81 0.83 0.83 0.88 0.85 0.88 0.91

Bagging Min. 0.65 0.70 0.67 0.69 0.69 0.72 0.71 0.73
Q1 0.70 0.77 0.74 0.75 0.76 0.79 0.81 0.83
Median 0.72 0.79 0.77 0.78 0.79 0.82 0.83 0.86
Q3 0.74 0.82 0.80 0.81 0.82 0.83 0.86 0.89
Max. 0.83 0.90 0.89 0.88 0.91 0.90 0.92 0.95

kNN Min. 0.63 0.66 0.65 0.62 0.66 0.67 0.72 0.73
Q1 0.69 0.71 0.70 0.71 0.71 0.76 0.78 0.81
Median 0.71 0.73 0.72 0.73 0.73 0.78 0.81 0.83
Q3 0.73 0.75 0.75 0.76 0.77 0.80 0.83 0.85
Max. 0.78 0.79 0.80 0.82 0.83 0.84 0.90 0.91

Huber Min. 0.63 0.99 0.94 0.94 0.96 0.92 0.92 0.99
Q1 0.72 1.10 1.09 1.11 1.10 1.01 1.09 1.11
Median 0.76 1.15 1.15 1.17 1.16 1.07 1.14 1.16
Q3 0.79 1.22 1.22 1.23 1.25 1.10 1.20 1.24
Max. 0.87 1.46 1.38 1.45 1.43 1.24 1.37 1.41

Theil-Sen Min. 0.63 1.01 0.95 0.99 1.00 0.94 0.92 1.00
Q1 0.72 1.11 1.12 1.13 1.13 1.02 1.09 1.12
Median 0.76 1.19 1.18 1.20 1.20 1.08 1.16 1.18
Q3 0.79 1.25 1.26 1.27 1.28 1.12 1.22 1.26
Max. 0.87 1.48 1.41 1.50 1.48 1.25 1.38 1.44

Factors Min. 0.61 0.65 0.63 0.66 0.65 0.71 0.74 0.74
Q1 0.69 0.71 0.71 0.71 0.71 0.76 0.79 0.81
Median 0.72 0.74 0.74 0.74 0.74 0.79 0.82 0.83
Q3 0.76 0.76 0.76 0.77 0.77 0.82 0.85 0.86

5.4. Empirical Analysis and Discussion 125

Table 7 – Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M
Max. 0.85 0.83 0.81 1.50 0.88 0.90 0.95 1.32

GARCH Min. 0.38 0.49 0.48 0.49 0.49 0.53 0.50 0.50
Q1 0.56 0.67 0.68 0.70 0.71 0.62 0.61 0.62
Median 0.63 0.74 0.79 0.81 0.81 0.67 0.65 0.67
Q3 0.72 0.89 0.93 0.93 0.95 0.71 0.70 0.73
Max. 0.99 1.20 1.24 1.33 1.39 0.86 0.86 0.94

VECM Min. 0.48 0.71 0.80 0.69 0.81 0.59 0.54 0.49
Q1 0.61 0.89 0.95 0.90 0.94 0.70 0.69 0.72
Median 0.64 0.93 1.02 0.96 0.99 0.75 0.78 0.85
Q3 0.68 1.02 1.12 1.03 1.06 0.81 0.86 0.94
Max. 0.77 1.16 1.36 1.24 1.46 0.97 1.04 1.20

SETAR Min. 0.51 0.62 0.64 0.65 0.60 0.78 0.79 0.65
Q1 0.64 0.73 0.78 0.76 0.75 0.87 0.92 1.00
Median 0.68 0.78 0.85 0.81 0.81 0.93 0.98 1.07
Q3 0.72 0.84 0.91 0.87 0.89 0.99 1.06 1.14
Max 0.82 0.95 1.06 0.99 0.98 1.13 1.21 1.39

MA Min. 0.48 0.52 0.51 0.49 0.49 0.53 0.50 0.48
Q1 0.61 0.68 0.66 0.64 0.64 0.68 0.64 0.62
Median 0.68 0.76 0.75 0.73 0.74 0.75 0.73 0.72
Q3 0.76 0.85 0.85 0.84 0.86 0.83 0.83 0.84
Max. 0.97 1.10 1.10 1.09 1.12 1.07 1.07 1.09

SARIMA Min. 0.56 0.64 0.68 0.74 0.72 0.56 0.57 0.50
Q1 0.67 0.77 0.81 0.83 0.84 0.65 0.62 0.62
Median 0.71 0.81 0.85 0.88 0.88 0.69 0.67 0.67
Q3 0.74 0.85 0.91 0.93 0.95 0.73 0.71 0.71
Max. 0.84 1.00 1.04 1.10 1.09 0.84 0.81 0.93

ARFIMA Min. 0.58 0.61 0.72 0.70 0.73 0.53 0.51 0.52
Q1 0.65 0.73 0.80 0.82 0.83 0.63 0.64 0.63
Median 0.69 0.77 0.85 0.87 0.87 0.66 0.68 0.68
Q3 0.72 0.84 0.94 0.92 0.93 0.70 0.71 0.72
Max. 0.86 0.93 1.07 1.12 1.07 0.83 0.80 0.83

GradBoost Min. 0.59 0.68 0.70 0.71 0.67 0.71 0.75 0.74
Q1 0.66 0.75 0.76 0.75 0.75 0.78 0.80 0.83
Median 0.68 0.77 0.78 0.78 0.78 0.80 0.83 0.86
Q3 0.71 0.80 0.80 0.80 0.81 0.82 0.85 0.88
Max. 0.77 0.89 0.86 0.88 0.92 0.90 0.91 0.93

AdaBoost Min. 0.60 0.66 0.66 0.67 0.65 0.69 0.73 0.75

126 Chapter 5. Results

Table 7 – Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M
Q1 0.66 0.72 0.72 0.72 0.72 0.76 0.79 0.82
Median 0.69 0.74 0.74 0.74 0.75 0.78 0.82 0.84
Q3 0.71 0.76 0.77 0.77 0.78 0.81 0.84 0.86
Max. 0.80 0.83 0.81 0.83 0.87 0.89 0.93 0.93

Bayes Reg. Min. 0.65 0.71 0.74 0.72 0.73 0.75 0.76 0.77
Q1 0.73 0.82 0.82 0.82 0.83 0.85 0.86 0.90
Median 0.77 0.86 0.86 0.87 0.87 0.88 0.91 0.93
Q3 0.81 0.90 0.90 0.90 0.92 0.92 0.95 0.98
Max. 0.93 1.01 1.01 1.07 1.05 1.06 1.08 1.09

Table 8 – Ranks produced by comparing the models according to their average MAE
through the simulations. The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M
LSTM 2 2 2 2 2 2 2 2
ConvLSTM 1 1 1 1 1 1 1 1
MLP 20 20 17 17 19 20 21 21
RW 26 24 24 24 24 26 24 24
Ridge CV 6 6 6 6 6 11 11 10
BRidge 8 13 11 13 13 15 17 17
LASSO CV 7 3 5 5 5 10 9 9
BLASSO 9 5 3 3 4 9 10 8
Enet CV 3 4 4 4 3 7 8 7
SVR 10 7 8 7 8 13 13 12
RF 15 15 14 14 15 17 18 15
BART 13 11 10 11 10 12 12 11
Bagging 21 19 15 16 17 21 19 20
kNN 19 8 7 9 7 14 14 13
Huber 23 25 25 25 25 24 25 25
Theil-Sen 24 26 26 26 26 25 26 26
Factors 22 9 9 10 11 18 15 14
GARCH 4 12 18 19 12 4 3 4
VECM 5 23 23 23 23 8 7 18
SETAR 11 18 19 18 18 23 23 23
MA 14 14 13 8 9 6 6 6
SARIMA 18 21 21 22 21 5 4 3
ARFIMA 16 16 20 21 20 3 5 5
GradBoost 12 17 16 15 16 19 20 19

5.4. Empirical Analysis and Discussion 127

Table 8 – Ranks produced by comparing the models according to their average MAE
through the simulations. The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M
AdaBoost 17 10 12 12 14 16 16 16
Bayes Reg. 25 22 22 20 22 22 22 22

Table 9 – Confidence intervals for the MAE. For each model, the first line contains the
average MAE and the second one, the limits of the interval. Some forecasting
periods were omitted for the sake of simplicity. The results for these additional
periods are similar to those reported in the table.

Model 1 3 3M 6M 12M
LSTM 0.46 0.60 0.53 0.61 0.58

(0.29, 0.67) (0.51, 0.73) (0.41, 0.67) (0.48, 0.85) (0.46, 0.77)
ConvLSTM 0.33 0.54 0.46 0.54 0.47

(0.28, 0.40) (0.51, 0.55) (0.38, 0.55) (0.42, 0.68) (0.37, 0.58)
MLP 0.71 0.79 0.82 0.86 0.88

(0.63, 0.80) (0.71, 0.86) (0.73, 0.90) (0.77, 0.95) (0.79, 0.97)
RW 1.06 1.06 1.10 1.12 1.12

(0.93, 1.18) (0.94, 1.18) (0.95, 1.20) (1.00, 1.24) (1.00, 1.25)
Ridge CV 0.65 0.71 0.77 0.79 0.82

(0.59, 0.79) (0.65, 0.77) (0.70, 0.83) (0.73, 0.86) (0.75, 0.88)
BRidge 0.66 0.74 0.78 0.81 0.84

(0.58, 0.77) (0.67, 0.81) (0.69, 0.85) (0.74, 0.90) (0.75, 0.92)
LASSO CV 0.64 0.71 0.76 0.79 0.82

(0.58, 0.72) (0.65, 0.77) (0.70, 0.83) (0.73, 0.86) (0.75, 0.88)
BLASSO 0.66 0.71 0.76 0.79 0.82

(0.58, 0.75) (0.65, 0.77) (0.69, 0.82) (0.73, 0.86) (0.75, 0.88)
Enet CV 0.63 0.70 0.75 0.79 0.81

(0.56, 0.70) (0.65, 0.76) (0.68, 0.80) (0.73, 0.85) (0.74, 0.87)
SVR 0.67 0.72 0.77 0.80 0.83

(0.62, 0.74) (0.67, 0.78) (0.70, 0.82) (0.73, 0.88) (0.75, 0.90)
RF 0.69 0.75 0.79 0.82 0.84

(0.63, 0.79) (0.69, 0.83) (0.71, 0.85) (0.75, 0.90) (0.77, 0.91)
BART 0.68 0.74 0.77 0.80 0.82

(0.61, 0.76) (0.67, 0.81) (0.68, 0.84) (0.73, 0.87) (0.74, 0.90)
Bagging 0.72 0.78 0.81 0.83 0.86

(0.65, 0.80) (0.70, 0.87) (0.74, 0.89) (0.74, 0.90) (0.77, 0.93)
kNN 0.71 0.73 0.78 0.81 0.83

(0.64, 0.77) (0.65, 0.79) (0.70, 0.84) (0.73, 0.87) (0.75, 0.90)

128 Chapter 5. Results

Table 9 – Confidence intervals for the MAE. For each model, the first line contains the
average MAE and the second one, the limits of the interval. Some forecasting
periods were omitted for the sake of simplicity. The results for these additional
periods are similar to those reported in the table.

Model 1 3 3M 6M 12M
Huber 0.75 1.16 1.07 1.14 1.17

(0.65, 0.85) (1.01, 1.35) (0.94, 1.22) (0.97, 1.33) (1.00, 1.38)
Theil-Sen 0.76 1.19 1.08 1.16 1.19

(0.65, 0.86) (1.03, 1.39) (0.95, 1.23) (0.99, 1.34) (1.01, 1.39)
Factors 0.73 0.73 0.79 0.82 0.84

(0.63, 0.83) (0.65, 0.80) (0.73, 0.88) (0.75, 0.90) (0.75, 0.93)
GARCH 0.64 0.81 0.67 0.66 0.67

(0.41, 0.88) (0.52, 1.11) (0.55, 0.84) (0.52, 0.81) (0.51, 0.81)
VECM 0.64 1.03 0.76 0.78 0.83

(0.54, 0.76) (0.83, 1.31) (0.61, 0.92) (0.57, 1.00) (0.50, 1.13)
SETAR 0.67 0.84 0.93 0.99 1.06

(0.55, 0.78) (0.66, 1.03) (0.79, 1.11) (0.82, 1.18) (0.77, 1.29)
MA 0.68 0.75 0.75 0.73 0.72

(0.59, 0.78) (0.62, 0.90) (0.63, 0.88) (0.58, 0.89) (0.55, 0.90)
SARIMA 0.70 0.86 0.69 0.67 0.67

(0.60, 0.80) (0.71, 1.01) (0.58, 0.83) (0.57, 0.81) (0.52, 0.82)
ARFIMA 0.69 0.87 0.67 0.68 0.68

(0.59, 0.80) (0.73, 1.06) (0.57, 0.79) (0.56, 0.79) (0.54, 0.83)
GradBoost 0.68 0.78 0.80 0.83 0.85

(0.61, 0.75) (0.70, 0.85) (0.73, 0.89) (0.76, 0.90) (0.77, 0.93)
AdaBoost 0.69 0.74 0.79 0.82 0.84

(0.61, 0.76) (0.68, 0.80) (0.72, 0.86) (0.75, 0.89) (0.77, 0.92)
Bayes Reg. 0.77 0.86 0.89 0.91 0.93

(0.66, 0.92) (0.77, 0.96) (0.77, 1.03) (0.79, 1.04) (0.80, 1.05)

Table 10 – Average MAE reduction delivered by each model with respect to random walk.
Negative values mean that the model increased the MSE. The winning model
is highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M
LSTM 57.9% 44.5% 43.5% 43.5% 42.1% 51.6% 46.9% 49.5%
ConvLSTM 69.7% 49.7% 48.9% 49.2% 48.0% 58.2% 52.1% 58.8%
MLP 33.1% 24.5% 25.7% 25.6% 23.8% 25.7% 23.3% 22.0%
RW 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Ridge CV 39.8% 31.6% 32.9% 33.1% 31.8% 30.2% 28.8% 27.1%

5.4. Empirical Analysis and Discussion 129

Table 10 – Average MAE reduction delivered by each model with respect to random walk.
Negative values mean that the model increased the MSE. The winning model
is highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M
BRidge 39.1% 28.7% 30.1% 29.9% 28.4% 29.2% 26.5% 25.3%
LASSO CV 39.7% 32.6% 33.7% 33.4% 32.3% 30.4% 28.9% 27.3%
BLASSO 38.3% 32.4% 33.7% 33.8% 32.4% 30.6% 28.9% 27.3%
Enet CV 41.2% 32.6% 33.7% 33.7% 32.3% 31.4% 29.6% 27.7%
SVR 36.9% 30.4% 31.6% 32.5% 30.4% 29.7% 28.1% 26.1%
RF 35.7% 27.4% 29.3% 29.7% 27.1% 28.5% 26.4% 25.6%
BART 36.3% 29.2% 30.5% 30.5% 28.8% 30.0% 28.5% 26.6%
Bagging 32.5% 24.6% 27.4% 26.8% 24.7% 25.6% 25.7% 23.6%
kNN 33.2% 30.3% 32.0% 31.6% 30.4% 29.4% 27.6% 26.0%
Huber 29.2% -10.0% -7.8% -9.0% -11.2% 2.5% -2.0% -2.9%
Theil-Sen 28.6% -14.0% -10.6% -11.9% -14.5% 1.4% -4.2% -4.6%
Factors 32.2% 29.8% 30.9% 30.5% 29.2% 27.6% 26.7% 26.0%
GARCH 40.7% 29.1% 25.4% 23.8% 23.0% 39.3% 41.4% 40.6%
VECM 39.9% 11.2% 3.8% 5.9% 5.4% 31.3% 29.8% 24.6%
SETAR 36.3% 25.5% 20.4% 24.6% 23.0% 15.7% 12.3% 5.3%
MA 35.9% 27.9% 29.9% 31.9% 29.6% 32.0% 34.3% 36.5%
SARIMA 33.7% 22.4% 19.9% 18.1% 15.9% 37.2% 40.3% 40.9%
ARFIMA 35.4% 27.0% 20.1% 18.6% 17.1% 39.5% 38.8% 39.8%
GradBoost 36.3% 26.1% 26.7% 27.2% 26.0% 27.4% 25.6% 24.0%
AdaBoost 35.3% 29.4% 30.1% 30.0% 28.8% 28.7% 26.6% 25.6%
Bayes Reg. 27.7% 18.0% 18.9% 19.6% 17.3% 19.7% 18.4% 17.3%

In conclusion, the results shown in this section confirm that the combination of
ConvLSTM and variational autoencoders yields the best out-of-sample performance
according to different metrics and in distinct windows of the time horizon considered in
this study.

131

6 CONCLUSIONS

The present work is devoted to the evaluation of deep learning methods for inflation
forecasting, a daunting and unsolved problem that has challenged academics and prac-
titioners in the past decades. In particular, a combination of ConvLSTM networks and
variational autoencoders is proposed due to the success these models have demonstrated
in several practical applications involving time series analysis, as the pertaining literature
unveils. With the purpose of corroborating the superiority of the advocated combination
of models, a wide selection of benchmarks comprised by popular econometric and ma-
chine learning models is adjusted to US inflation data. In the sequence, an out-of-sample
performance comparison is implemented to determine the winning model.

As expected, the experiments demonstrate that coupling variational autoencoders to
a ConvLSTM networks yields compelling results. Merging these techniques significantly
improves the out-of-sample accuracy in comparison with the benchmarks, generating the
lowest median MSE across simulations. The same conclusion is obtained using distinct
performance metrics, such as MAE, and is robust in multiple forecasting horizons. The
simulations using different training and test samples confirm that, despite the variations
observed across iterations, the proposed model delivers more accurate predictions in every
scenario.

Furthermore, by demonstrating that deep learning is more effective when tackling the
challenges of inflation forecasting that emerge due to nonlinearities and nonstationarity,
as confirmed by empirical evidences, the present work offers additional proof that linear
models such as the standard Phillips curve are inadequate to explain inflation dynamics.
It is also attested that inflation is explained by multiple macroeconomic variables, most of
which are highly correlated, and employing techniques for dimension reduction such as the
variational autoencoder improves the quality of the forecasts.

The findings reported here also suggest that similar accomplishments may be achieved
using deep learning for modeling and forecasting other macroeconomic variables. Indeed,
some reasons presented here to justify the existence of a nonlinear dynamics governing
inflation are valid for other macroeconomic time series. Thereby, further studies may be
conducted to investigate the application of deep networks in these contexts, comparing
the results with methods traditionally adopted to model these series.

Additionally, nonlinearities seem to abound in the macroeconomic dataset contem-
plated in this work. This conclusion stems from the fact that the variational autoencoder
managed to improve the performance of the ConvLSTM model, while linear factor models
displayed mediocre out-of-sample accuracy. Together, these findings suggest that a nonlin-
ear factor structure governs these macroeconomic variables, in agreement with the study
by Gu, Kelly and Xiu (2020), who detect nonlinear factors in a large set of financial time
series through the application of autoencoders. Given the analogous nature of these sets

132 Chapter 6. Conclusions

and the deep connection between financial and macroeconomic variables, it is reasonable
to believe that a similar structure should be present in the dataset considered herein. A
thorough examination of this aspect would be pertinent for future projects, giving an
important contribution to the literature.

Naturally, given that deep learning is a ever-growing field of research, with many
discoveries happening continuously, multiple extensions of the present work can be envi-
sioned. For instance, in what concerns the transformation of the input data for denoising
and dimension reduction, wavelets have attracted attention in recent years for time se-
ries denoising and decomposition into uncorrelated components (PERCIVAL; WALDEN,
2006).

In practice, the discrete version of the wavelet transform (DWT) is more common
for time series, since these operate in discrete time as well. As highlighted by Percival
and Walden (2006), DWT rewrites a time series in terms of coefficients associated with a
particular time employing a dyadic scale. This decomposition by time scale allow wavelets
to deal with nonstationary series, which are frequently observed in Economics and Finance
(HSIEH; HSIAO; YEH, 2011). By working with multiple scales and high resolution, wavelets
determine not only which frequencies are existent in a signal, but also at which time they
have occurred, which is helpful to detect noise and local features.

An instructive example of wavelets applied when forecasting stock markets is devel-
oped by Hsieh, Hsiao and Yeh (2011). The authors introduce an integrated system where
wavelet transforms and recurrent neural networks are merged for stock price forecasting.
In this process, wavelets are implemented to decompose stock price time series and, thus,
eliminate noise, yielding promising results. In a similar fashion, Gallegati (2008) employs
discrete wavelet transforms to the Dow Jones stock index and the industrial production
index for the US to scrutinize the ability of the stock market to anticipate the future level
of economic activity. Likewise, Chang, Zhang and Chen (2019) combine LSTM networks
and wavelet transforms in the context of electricity price prediction. The authors report
compelling improvements in forecasting accuracy over simpler models. Ultimately, Bao,
Yue and Rao (2017) exploit DWT for decomposing and denoising stock price series and
later model the transformed data using a combination of stacked autoencoders and LSTM
networks.

Besides, alternative architectures for the ConvLSTM and VAE adopted in this
work could also be scrutinized to optimize out-of-sample performance. For instance, in
terms of activation function, an interesting option is the Swish function discovered by
Ramachandran, Zoph and Le (2018). It is defined by:

f(x) = x · σ(βx) (6.1)

where σ(·) is the sigmoid function and β is a parameter. Experiments show that Swish
outperforms ReLU on deeper networks across a number of challenging datasets. Also,
distinct architectures for the LSTM part of the model that could be tested are provided by

133

Yu et al. (2019), while, with respect to autoencoders, Dong et al. (2018) provide auspicious
alternatives.

Another area to which significant time was dedicated and extensions are feasible
comprehends the prevention of overfitting. In this aspect, a notorious criticism with respect
to neural networks is that these models often lack transparency, are highly parameterized,
and have complex interpretations due to the existence of many nonlinear interactions
between their parts. Hence, they are judged as black boxes, and their out-of-sample
accuracy is often questioned. Thus, by ensuring that overfitting is avoided, more confidence
is obtained regarding generalization and out-of-sample performance. Here, techniques such
as dropout layers and batch normalization were extensively used in order to address this
problem. Still, alternatives exist. For instance, Courbariaux, Bengio and David (2015)
introduce the BinaryConnect, a method which consists in training a deep neural network
with binary weights. The authors conclude that, analogously to other dropout schemes,
BinaryConnect acts as a regularizer and yields near state-of-the-art results in many
applications.

Moreover, out-of-sample performance analysis could also be improved using generative
adversarial networks (GAN), introduced in the seminal paper by Goodfellow et al. (2014).
Essentially, in these models, two networks are simultaneously trained: a generative one,
G, that captures the data distribution, and a discriminative one, D, that estimates the
probability that a sample came from the training data rather than from the generative
network. G is trained to maximize its ability to fool D. Such framework is equivalent to a
minimax two-player game popular in Game Theory.

An application involving GANs in the context of inflation forecasting would be the
generation of additional datasets, enriching the out-of-sample evaluation of the models
tested here. As an illustration, Takahashi, Chen and Tanaka-Ishii (2019) use GANs for
financial time series, obtaining promising results. The authors demonstrate that the
GAN model learns the properties of data and produces realistic time series in a data-
driven manner, replicating statistical properties such as linear unpredictability, heavy tails,
volatility clustering, leverage effects, and asymmetry.

The detailed and profound analysis of which macroeconomic variables should be
added or excluded when forecasting inflation was outside the scope of this work, which
focused on demonstrating the benefits of using deep learning in this context. Indeed, this
delimitation is one of the factors justifying the decision to employ the dataset provided by
McCracken and Ng (2016), who rigorously follow the best practices in the literature when
compiling the data to ensure that it could be used in academic research. Nevertheless,
this decision does not imply that variable selection could not improve out-of-sample
performance.

An encouraging approach comprehends the use of disaggregated prices that could be
individually forecast for later combination to predict the aggregated CPI. The literature

134 Chapter 6. Conclusions

shows that interesting results can be found with these time series. For instance, Monacelli
and Sala (2009) estimate the contribution of international common factors to the dynamics
of price inflation rates of a cross-section of 948 CPI products in US, Germany, France,
and UK. The authors conclude that one international common factor explains between
15% and 30% of the variance of consumer prices between 1991 and 2004. Besides, they
identify a positive and statistically significant relationship between exposure of consumer
inflation to international shocks and trade openness at the sectoral level. Coleman (2010)
also utilizes disaggregated prices in sub-Saharan Africa, where inflation persistence has
deleterious welfare consequences due to pervasive poverty. The author uses fractional
integration methods and verify that inflation series are characterized by mean-reversion,
finite variance and asymmetry in inflation persistence.

Meanwhile, Duarte and Rua (2007) appraise inflation forecast accuracy over short-
term horizon via CPI disaggregated data. The authors adopt a bottom-up approach,
aggregating forecasts and later comparing against predictions obtained using the aggregated
CPI. The findings reported suggest that, for very short-term inflation forecasting, the
bottom-up approach is superior, while, for longer horizons, simpler models fitted with
aggregated data tend to display stronger performance.

Finally, an interesting extension related to the optimization of neural networks involve
robust methods. Briefly, whereas traditional optimization methods attempt to simply find
the minimum of a function over the set of feasible solutions, robust methods take into
consideration the uncertainty associated with the inputs of the model to find a solution
that may not be theoretically the best, but that may perform decently considering all
the possible realizations of the parameters. Indeed, as emphasized by Gabrel, Murat and
Thiele (2014), robust optimization encompasses several approaches designed to protect the
decision-maker against parameter ambiguity and stochastic uncertainty. Mathematically,
given an ε > 0 and a function f(x) to be minimized, robust optimization methods focus
on solving the following type of problem:

min
x

max
‖∆x‖≤ε

f(x+ ∆x) (6.2)

That is, they seek to minimize the maximum value attained by the function f given the
uncertainty set generated by deviations ‖∆x‖ ≤ ε.

Until now, robust optimization has exhibited impressive results in portfolio selection
problems and analogous contexts where input uncertainty has a significant influence on the
optimal decision. For instance, Bertsimas and Pachamanova (2008) apply these methods
to select portfolios in a multiperiod framework under the presence of transaction costs.
The authors conclude that robust portfolios are far more resilient to parameter ambiguity
and, thus, outperform traditional portfolios in the real world. Further applications across
a broad spectrum of domains are provided by Bertsimas, Brown and Caramanis (2011),
covering examples belonging to Finance, Statistics, Learning, and Engineering.

135

In the context of inflation forecasting, given that data is prone to revisions and may
suffer from questionable methodologies for their computation, it could potentially improve
out-of-sample performance when training neural networks. Besides, as indicated by Keskar
et al. (2017), robust optimization could also mitigate the impacts of sharp minima in the
out-of-sample loss function and accuracy.

137

BIBLIOGRAPHY

ADAMOWSKI, J. F. Peak daily water demand forecast modeling using artificial neural
networks. Journal of Water Resources Planning and Management, v. 134, n. 2, p. 119–128,
Mar. 2008. Cited on page 73.

AHMED, N. K. et al. An empirical comparison of machine learning models for time series
forecasting. Econometric Reviews, v. 29, n. 5, p. 594–621, Sep. 2010. Cited 2 times on
pages 28 and 73.

ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, v. 46, n. 3, p. 175–185, Aug. 1992. Cited on page 51.

ÁLVAREZ-DÍAZ, M.; GUPTA, R. Forecasting US consumer price index: Does nonlinearity
matter? Applied Economics, v. 48, n. 46, p. 4462–4475, Mar. 2016. Cited 2 times on
pages 28 and 36.

ARUOBA, S. B.; BOCOLA, L.; SCHORFHEIDE, F. Assessing DSGE model nonlinearities.
Journal of Economic Dynamics & Control, v. 83, n. 10, p. 34–54, Oct. 2017. Cited on
page 36.

ATKESON, A.; OHANIAN, L. E. Are Phillips Curves useful for forecasting inflation?
Federal Reserve Bank of Minneapolis Quarterly Review, Minneapolis, v. 25, n. 1, p. 2–11,
Jan./Mar. 2001. Cited 12 times on pages 21, 22, 35, 90, 92, 110, 111, 112, 113, 114, 115,
and 119.

ATSALAKIS, G. S.; VALAVANIS, K. P. Surveying stock market forecasting techniques
– part II: Soft computing methods. Expert Systems with Applications, v. 36, n. 3, p.
5932–5941, Apr. 2009. Cited 4 times on pages 28, 56, 73, and 107.

BAI, J.; NG, S. Forecasting economic time series using targeted predictors. Journal of
Econometrics, v. 146, n. 2, p. 304–317, Oct. 2008. Cited 2 times on pages 41 and 91.

BAI, J.; NG, S. Boosting diffusion indices. Journal of Applied Econometrics, v. 24, n. 4, p.
607–629, Mar. 2009. Cited on page 42.

BAI, S.; TANG, H.; AN, S. Coordinate CNNs and LSTMs to categorize scene images
with multi-views and multi-levels of abstraction. Expert Systems with Applications, v. 120,
n. 3, p. 298–309, Apr. 2019. Cited 2 times on pages 65 and 78.

BAILLIE, R. T.; CHUNG, C.-F.; TIESLAY, M. A. Analysing inflation by the fractionally
integrated ARFIMA-GARCH model. Journal of Applied Econometrics, v. 11, n. 1, p.
23–40, Jan. 1996. Cited on page 37.

BALL, L.; MAZUMDER, S. Inflation dynamics and the Great Recession. Brookings
Papers on Economic Activity, v. 42, n. 1, p. 337–405, Jul. 2011. Cited on page 36.

BAO, W.; YUE, J.; RAO, Y. A deep learning framework for financial time series using
stacked autoencoders and long-short term memory. PLoS ONE, v. 12, n. 7, p. 203–228,
Jul. 2017. Cited 4 times on pages 29, 73, 86, and 132.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 35,
n. 8, p. 1798–1828, Ago. 2013. Cited on page 61.

138 Bibliography

BERTSIMAS, D.; BROWN, D. B.; CARAMANIS, C. Theory and applications of robust
optimization. SIAM Review, v. 53, n. 3, p. 464–501, Sep. 2011. Cited on page 134.

BERTSIMAS, D.; PACHAMANOVA, D. Robust multiperiod portfolio management in the
presence of transaction costs. Computer & Operations Research, v. 35, n. 1, p. 3–17, Jan.
2008. Cited on page 134.

BINNER, J. M. et al. Predictable non-linearities in U.S. inflation. Economics Letters,
v. 93, n. 3, p. 323–328, Dec. 2006. Cited on page 36.

BISHOP, C. M. Pattern recognition and machine learning. 1. ed. Cambridge: Springer,
2006. Cited 2 times on pages 54 and 83.

BLANCHARD, O. The Phillips Curve: Back to the ’60s? American Economic Review,
v. 106, n. 5, p. 31–34, May 2016. Cited on page 35.

BLOOM, N. The impact of uncertainty shocks. Econometrica, v. 77, n. 3, p. 623–685,
May 2009. Cited on page 27.

BOIVIN, J.; NG, S. Are more data always better for factor analysis? Journal of
Econometrics, v. 132, n. 1, p. 169–194, May 2006. Cited on page 74.

BOLLERSLEV, T. Generalized Autoregressive Conditional Heteroskedasticity. Journal of
Econometrics, v. 31, n. 3, p. 307–327, Apr. 1986. Cited on page 38.

BREIMAN, L. Bagging predictors. Machine Learning, v. 24, n. 1, p. 123–140, Aug. 1996.
Cited on page 46.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct. 2001. Cited
2 times on pages 47 and 50.

CAI, M.; LIU, J. Maxout neurons for deep convolutional and LSTM neural networks in
speech recognition. Speech Communication, v. 77, n. 1, p. 53–64, Mar. 2016. Cited on
page 70.

CALVO, G. A. Staggered prices in a utility-maximizing framework. Journal of Monetary
Economics, v. 12, n. 3, p. 383–398, Sep. 1983. Cited on page 33.

CAO, J.; LI, Z.; LI, J. Financial time series forecasting model based on CEEMDAN and
LSTM. Physica A: Statistical Mechanics and its Applications, v. 519, n. 4, p. 1509–1531,
Apr. 2019. Cited on page 68.

CHANG, Z.; ZHANG, Y.; CHEN, W. Electricity price prediction based on hybrid model
of adam optimized LSTM neural network and wavelet transform. Energy, v. 187, n. 1, p.
1–12, Nov. 2019. Cited on page 132.

CHEN, G. et al. Multiple random forests modelling for urban water consumption
forecasting. Water Resources Management, v. 31, n. 1, p. 4715–4729, Sep. 2017. Cited on
page 50.

CHIPMAN, H. A.; GEORGE, E. I.; MCCULLOCH, R. E. Bart: Bayesian additive
regression trees. The Annals of Applied Statistics, v. 4, n. 1, p. 266–298, Jan. 2010. Cited
2 times on pages 50 and 51.

Bibliography 139

CHO, K. et al. Understanding batch normalization. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEM, 31., 2018, Montreal, Canada. Proceedings...
[S.l.]: Curran Associates, Inc., 2014. p. 7694–7705. Cited on page 85.

CHONG, E.; HAN, C.; PARK, F. C. Deep learning networks for stock market analysis
and prediction: Methodology, data representations, and case studies. Expert Systems with
Applications, v. 83, n. 1, p. 187–205, Oct. 2017. Cited 2 times on pages 97 and 107.

CHOUDHARY, M. A.; HAIDER, A. Neural network models for inflation forecasting: An
appraisal. Applied Economics, v. 44, n. 20, p. 2631–2635, Oct. 2012. Cited 2 times on
pages 28 and 71.

CLARK, T. E.; DOH, T. Evaluating alternative models of trend inflation. International
Journal of Forecasting, v. 30, n. 3, p. 426–448, Jul./Sep. 2014. Cited on page 37.

COIBION, O.; GORODNICHENKO, Y. Is the Phillips Curve alive and well after
all? Inflation expectations and the missing disinflation. American Economic Journal:
Macroeconomics, v. 7, n. 1, p. 197–232, Jan. 2015. Cited on page 36.

COLEMAN, S. Inflation persistence in the franc zone: Evidence from disaggregated prices.
Journal of Macroeconomics, v. 32, n. 1, p. 426–442, Mar. 2010. Cited on page 134.

COLLINS, M.; SCHAPIRE, R. E.; SINGER, Y. Logistic regression, AdaBoost, and
Bregman distances. Machine Learning, v. 48, n. 1, p. 253–285, Jul. 2002. Cited on page
46.

COLOGNI, A.; MANERA, M. Oil prices, inflation and interest rates in a structural
cointegrated VAR model for the G-7 countries. Energy Economics, v. 30, n. 3, p. 856–888,
May 2008. Cited 2 times on pages 39 and 92.

CORREA, A. S.; MINELLA, A. Nonlinear mechanisms of the exchange rate pass-through:
A Phillips curve model with threshold for Brazil. Revista Brasileira de Economia, Rio de
Janeiro, v. 64, n. 3, p. 231–243, Jul./Sep. 2010. Cited on page 36.

COURBARIAUX, M.; BENGIO, Y.; DAVID, J.-P. BinaryConnect: Training deep
neural networks with binary weights during propagations. In: INTERNATIONAL
CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS, 28., 2015,
Montreal, Canada. Proceedings... [S.l.]: MIT Press, 2015. p. 3123–3131. Cited on page
133.

DALY, M. C.; HOBIJN, B. Downward nominal wage rigidities bend the Phillips Curve.
Journal of Money, Credit and Banking, v. 46, n. 2, p. 51–93, Oct. 2014. Cited 2 times on
pages 27 and 36.

DASH, N. B. et al. Hybrid neural modeling for groundwater level prediction. Neural
Computing and Applications, v. 19, n. 8, p. 1251–1263, Nov. 2010. Cited on page 78.

DELALLEAU, O.; BENGIO, Y. Shallow vs. deep sum-product networks. In:
INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING
SYSTEMS, 24., 2011, Granada, Spain. Proceedings... Red Hook, NY: NIPS, 2011. p.
666–674. Cited on page 53.

140 Bibliography

DENNIS, R. The frequency of price adjustment and New Keynesian business cycle
dynamics. San Francisco, 2006. (Federal Reserve Bank of San Francisco Working Paper
Series). Cited on page 34.

DHILLON, A.; VERMA, G. K. Convolutional neural network: A review of models,
methodologies and application to object detection. Progress in Artificial Intelligence, v. 9,
n. 2, p. 85–112, Jun. 2020. Cited on page 64.

DOERSCH, C. Tutorial on Variational Autoencoders. 2016. Cited 2 times on pages 74
and 75.

DONG, G. et al. A review of the autoencoder and its variants: A comparative perspective
from target recognition in synthetic-aperture radar images. IEEE Geoscience and Remote
Sensing Magazine, v. 6, n. 3, p. 51–93, Oct. 2018. Cited 3 times on pages 17, 62, and 133.

DOZAT, T. Incorporating Nesterov momentum into Adam. In: INTERNATIONAL
CONFERENCE ON LEARNING REPRESENTATIONS, 4., 2016, San Juan, Puerto
Rico. Proceedings... San Juan, Puerto Rico: ICLR, 2016. p. 1–4. Cited on page 98.

DUARTE, C.; RUA, A. Forecasting inflation through a bottom-up approach: How bottom
is bottom? Economic Modelling, v. 24, n. 6, p. 941–953, Nov. 2007. Cited on page 134.

ELDAN, R.; SHAMIR, O. The power of depth for feedforward neural networks. In:
CONFERENCE ON LEARNING THEORY, 29., 2016, Columbia University, New York.
Proceedings of Machine Learning Research. New York: PMLR, 2016. p. 907–940. Cited
on page 53.

ESSIEN, A.; GIANNETTI, C. A deep learning framework for univariate time
series prediction using convolutional LSTM stacked autoencoders. In: IEEE
INTERNATIONAL SYMPOSIUIM ON INNOVATIONS IN INTELLIGENT SYSTEMS
AND APPLICATIONS, 29., 2016, Sofia, Bulgaria. Proceedings... Sofia: IEEE, 2019. p. 1–6.
Cited 4 times on pages 29, 66, 68, and 73.

FAUST, J.; WRIGHT, J. H. Forecasting inflation. In: ELLIOTT, G.; TIMMERMANN, A.
Handbook of Economic Forecasting. 1. ed. New York: Elsevier, 2013. p. 2–56. Cited on
page 27.

FISCHER, T.; KRAUSS, C. Deep learning with long short-term memory networks for
financial market predictions. European Journal of Operational Research, v. 270, n. 2, p.
654–669, Oct. 2018. Cited 5 times on pages 17, 29, 68, 70, and 86.

FRIEDMAN, J. H. Stochastic gradient boosting. Computational Statistics & Data
Analysis, v. 38, n. 4, p. 367–378, Feb. 2002. Cited 2 times on pages 45 and 46.

GABREL, V.; MURAT, C.; THIELE, A. Recent advances in robust optimization: An
overview. European Journal of Operational Research, v. 235, n. 3, p. 471–483, Jun. 2014.
Cited on page 134.

GALESHCHUK, S. Neural networks performance in exchange rate prediction.
Neurocomputing, v. 172, n. 1, p. 446–452, Jan. 2016. Cited on page 73.

GALI, J. Monetary Policy, Inflation, and the Business Cycle. 2. ed. New Jersey: Princeton
University Press, 2015. Cited on page 33.

Bibliography 141

GALI, J.; GERTLER, M. Inflation dynamics: A structural econometric analysis. Journal
of Monetary Economics, v. 44, n. 2, p. 195–222, Oct. 1999. Cited 2 times on pages 33
and 35.

GALLEGATI, M. Wavelet analysis of stock returns and aggregate economic activity.
Computational Statistics & Data Analysis, v. 52, n. 6, p. 3061–3074, Feb. 2008. Cited on
page 132.

GARCIA, M. G. P.; MEDEIROS, M. C.; VASCONCELOS, G. F. R. Real-time inflation
forecasting with high-dimensional models: The case of Brazil. International Journal of
Forecasting, v. 33, n. 3, p. 679–693, Jul./Sep. 2017. Cited 2 times on pages 28 and 71.

GELMAN, A. et al. Bayesian Data Science. 2. ed. Florida: CRC Press, 2004. Cited on
page 92.

GERS, F.; SCHMIDHUBER, J. LSTM recurrent networks learn simple context-free
and context-sensitive languages. IEEE Transactions on Neural Networks, v. 12, n. 6, p.
1333–1340, Nov. 2001. Cited on page 68.

GERS, F.; SCHMIDHUBER, J.; CUMMINS, F. Learning to forget: Continual prediction
with LSTM. Neural Computation, v. 12, n. 10, p. 2451–2471, Out. 2000. Cited 3 times on
pages 68, 69, and 86.

GLOROT, X.; BORDES, A.; BENGIO, Y. Deep sparse rectifier neural networks. In:
CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, 15., 2011,
Columbia University, New York. Proceeding of Machine Learning Research. New York:
PMLR, 2011. p. 315–323. Cited 2 times on pages 56 and 67.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. 1. ed. Massachusetts:
The MIT Press, 2016. Cited 19 times on pages 17, 28, 29, 47, 54, 59, 61, 62, 63, 64, 66,
67, 75, 76, 83, 85, 86, 94, and 100.

GOODFELLOW, I. et al. Generative adversarial nets. In: INTERNATIONAL
CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS, 27., 2014,
Cambridge, USA. Proceedings... [S.l.]: Association for Computational Linguistics, 2014. p.
2672–2680. Cited on page 133.

GRAUWE, P. D.; JI, Y. Inflation targets and the zero lower bound in a behavioral
macroeconomic model. Economica, v. 86, n. 342, p. 262–299, Apr. 2019. Cited on page 27.

GREFF, K. et al. LSTM: A search space odyssey. IEEE Transactions on Neural Networks
and Learning Systems, v. 28, n. 10, p. 2222–2232, Oct. 2017. Cited on page 70.

GU, S.; KELLY, B.; XIU, D. Autoencoder asset pricing models. Journal of Econometrics,
Jul. 2020. Available at: <https://doi.org/10.1016/j.jeconom.2020.07.009>. Last access: 04
Jan. 2021. Cited 3 times on pages 30, 120, and 131.

GUPTA, R.; KABUNDI, A. A large factor model for forecasting macroeconomic variables
in South Africa. International Journal of Forecasting, v. 27, n. 4, p. 1, Oct./Dec. 2011.
Cited on page 42.

HAMILTON, J. D. A new approach to the economic analysis of nonstationary time series
and the business cycle. Econometrica, v. 57, n. 2, p. 357–384, Mar. 1989. Cited on page
40.

https://doi.org/10.1016/j.jeconom.2020.07.009

142 Bibliography

HANS, C. Bayesian lasso regression. Biometrika, v. 96, n. 4, p. 835–845, Sep. 2009. Cited
on page 43.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical learning. 2.
ed. California: Springer, 2008. Cited 12 times on pages 17, 37, 42, 43, 44, 45, 46, 47, 48,
49, 51, and 52.

HAYKIN, S. Neural networks: A comprehensive foundation. 2. ed. Ontario: Prentice Hall,
2004. Cited 2 times on pages 54 and 58.

HINTON, G. E.; OSINDERO, S.; TEH, Y. A fast learning algorithm for deep belief nets.
Neural Computation, v. 18, n. 7, p. 1527–1554, Jul. 2006. Cited on page 53.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Computation,
v. 9, n. 1, p. 1735–1780, Nov. 1997. Cited on page 68.

HOERL, A. E.; KENNARD, R. W. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, v. 12, n. 1, p. 55–67, Feb. 1970. Cited on page 44.

HOFFER, E.; HUBARA, I.; SOUDRY, D. Train longer, generalize better: Closing
the generalization gap in large batch training of neural networks. Advances in Neural
Information Processing Systems, v. 30, n. 1, p. 1729–1739, Feb. 2017. Cited on page 100.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are
universal approximators. Neural Networks, v. 2, n. 5, p. 359–366, Sep./Oct. 1989. Cited
on page 58.

HOSKING, J. R. M. Fractional differencing. Biometrika, v. 68, n. 1981, p. 165–176, Apr.
1981. Cited on page 37.

HSIEH, T.-J.; HSIAO, H.-F.; YEH, W.-C. Forecasting stock markets using wavelet
transforms and recurrent neural networks: An integrated system based on artificial bee
colony algorithm. Applied Soft Computing, v. 11, n. 2, p. 2510–2525, Mar. 2011. Cited 2
times on pages 66 and 132.

HÜSKEN, M.; STAGGE, P. Recurrent neural networks for time series classification.
Neurocomputing, v. 50, n. 1, p. 223–235, Jan. 2003. Cited on page 65.

INOUE, A.; KILIAN, L. How useful is bagging in forecasting economic time series?:
A case study of U.S. consumer price inflation. Journal of the American Statistical
Association, v. 103, n. 482, p. 511–522, Jun. 2008. Cited on page 47.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, 32., 2015, Lille, France. Proceedings... Lille, France: JMLR, 2015. p. 448–456.
Cited on page 85.

JAMES, G. et al. An Introduction to Statistical Learning with Application in R. 1. ed.
New York: Springer New York, 2013. Cited 4 times on pages 37, 42, 95, and 108.

JOZEFOWICZ, R.; ZAREMBA, W.; SUTSKEVER, I. An empirical exploration of
recurrent network architectures. In: INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, 2015. Proceedings... New York: ACM, 2015. p. 2342–2350. Cited on page 70.

Bibliography 143

KESKAR, N. S. et al. On large-batch training for deep learning: Generalization
gap and sharp minima. In: INTERNATIONAL CONFERENCE ON LEARNING
REPRESENTATIONS, 5., 2017, Toulon, France. Proceedings... Toulon, France: ICLR,
2017. p. 1–13. Cited 4 times on pages 18, 99, 100, and 135.

KHADAROO, A. J. A threshold in inflation dynamics: Evidence from emerging countries.
Applied Economics, v. 37, n. 6, p. 719–723, Jun. 2005. Cited on page 41.

KHASHEI, M.; BIJARI, M. A novel hybridization of artificial neural networks and
ARIMA models for time series forecasting. Applied Soft Computing, v. 11, n. 2, p.
2664–2675, Mar. 2011. Cited on page 78.

KIM, C. et al. Artificial neural networks for non-stationary time series. Neurocomputing,
v. 61, n. 8, p. 439–447, Oct. 2004. Cited on page 73.

KIM, C.-J. Unobserved-component time series models with Markov-switching
heteroscedasticity: Changes in regime and the link between inflation rates and inflation
uncertainty. Journal of Business & Economic Statistics, v. 11, n. 3, p. 341–349, Jul. 1993.
Cited on page 120.

KIM, H. H.; SWANSON, N. R. Forecasting financial and macroeconomic variables using
data reduction methods: New empirical evidence. Journal of Econometrics, v. 178, n. 2, p.
352–367, Jan. 2014. Cited on page 45.

KIM, H. Y.; WON, C. H. Forecasting the volatility of stock price index: A hybrid model
integrating LSTM with multiple GARCH-type models. Expert Systems with Applications,
v. 103, n. 1, p. 25–37, Aug. 2018. Cited 2 times on pages 70 and 73.

KIM, J. et al. Deep neural network with weight sparsity control and pre-training extracts
hierarchical features and enhances classification performance: Evidence from whole-brain
resting-state functional connectivity paters of schizophrenia. NeuroImage, v. 124, n. 1, p.
127–146, Jan. 2016. Cited on page 28.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. In:
INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS, 3., 2015,
San Diego, California. Proceedings... Ithaca, New York: ICLR, 2015. p. 1–13. Cited on
page 98.

KINGMA, D. P.; WEILLING, M. An introduction to variational autoencoders.
Foundations and Trends in Machine Learning, v. 12, n. 4, p. 307–392, Apr. 2019. Cited 2
times on pages 75 and 77.

KLAMBAUER, G. et al. Self-normalizing neural networks. In: CONFERENCE ON
NEURAL INFORMATION PROCESSING SYSTEMS, 31., 2017, Long Beach, California.
Proceedings... Long Beach: NIPS, 2017. p. 315–323. Cited 2 times on pages 57 and 82.

KONTONIKAS, A. Inflation and inflation uncertainty in the United Kingdom, evidence
from GARCH modelling. Economic Modelling, v. 21, n. 3, p. 525–543, May 2004. Cited
on page 38.

KRISTJANPOLLER, W.; MINUTOLO, M. C. Gold price volatility: A forecasting
approach using the Artificial Neural Network-GARCH model. Expert Systems with
Applications, v. 42, n. 20, p. 7245–7251, Nov. 2015. Cited on page 78.

144 Bibliography

KUHN, M.; JOHNSON, K. Applied predictive modeling. 1. ed. New York: Springer, 2013.
Cited on page 95.

KUMAR, A.; ORRENIUS, P. M. A closer look at the Phillips curve using state-level data.
Journal of Macroeconomics, v. 47, n. 3, p. 84–102, Mar. 2016. Cited on page 27.

LÄNGKVIST, M.; KARLSSON, L.; LOUTFI, A. A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recognition Letters, v. 42,
n. 2, p. 11–24, Jun. 2017. Cited 2 times on pages 29 and 73.

LECUN, Y. et al. Convolutional networks and applications in vision. In: IEEE
INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 1., 2010, Paris,
France. Proceedings... Paris, France: IEEE, 2010. p. 1–4. Cited on page 65.

LEE, S. W.; KIM, H. Y. Stock market forecasting with super-high dimensional time-series
data using ConvLSTM, trend sampling, and specialized data augmentation. Expert
Systems with Applications, v. 161, n. 1, p. 1–20, Dec. 2020. Cited on page 78.

LEROUGE, J. et al. IODA: An input/output deep architecture for image labeling.
Pattern Recognition, v. 48, n. 9, p. 2847–2858, Sep. 2015. Cited on page 28.

LI, J.; CHEN, W. Forecasting macroeconomic time series: LASSO-based approaches
and their forecast combinations with dynamic factor models. International Journal of
Forecasting, v. 30, n. 4, p. 996–1015, Oct.-Dec. 2014. Cited on page 44.

LI, X.; WU, X. Constructing long short-term memory based deep recurrent neural
networks for large vocabulary speech recognition. In: IEEE INTERNATIONAL
CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 1., 2015,
Brisbane, QLD. Proceedings... Brisbane: IEEE, 2015. p. 4520–4524. Cited 2 times on
pages 28 and 70.

LIU, G.; GUO, J. Bidirectional LSTM with attention mechanism and convolutional layer
for text classification. Neurocomputing, v. 337, n. 1, p. 325–338, Apr. 2019. Cited on page
70.

LIU, W. et al. A survey of deep neural network architectures and their applications.
Neurocomputing, v. 234, n. 1, p. 11–26, Apr. 2017. Cited 2 times on pages 28 and 73.

LU, C. et al. Fault diagnosis of rotary machinery components using a stacked denoising
autoencoder-based health state identification. Signal Processing, v. 130, n. 1, p. 377–388,
Jan. 2017. Cited on page 61.

LÜTKEPOHL, H. New introduction to multiple time series analysis. 1. ed. Berlin:
Springer, 2005. Cited on page 38.

MAAS, A. L.; HANNUN, A. Y.; NG, A. Y. Rectifier nonlinearities improve neural network
acoustic models. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING,
30., 2013, Atlanta, GA. Proceedings... Atlanta, GA: ICML, 2013. p. 1–13. Cited on page
57.

MAVROEIDIS, S. Identification issues in forward-looking models estimated by GMM,
with an application to the Phillips Curve. Journal of Money, Credit and Banking, v. 37,
n. 3, p. 421–448, Jun. 2005. Cited on page 35.

Bibliography 145

MAVROEIDIS, S.; PLAGBORG-MØLLER, M.; STOCK, J. H. Empirical evidence
on inflation expectations in the New Keynesian Phillips Curve. Journal of Economic
Literature, v. 52, n. 1, p. 124–188, Mar. 2014. Cited on page 33.

MCADAM, P.; MCNELIS, P. Forecasting inflation with thick models and neural networks.
Economic Modelling, v. 22, n. 5, p. 848–867, Sep. 2005. Cited 2 times on pages 28 and 70.

MCCRACKEN, M.; NG, S. FRED-MD: A monthly database for macroeconomic research.
Journal of Business and Economic Statistics, v. 34, n. 4, p. 574–589, Sep. 2016. Cited 12
times on pages 23, 24, 27, 74, 93, 104, 133, 149, 150, 151, 152, and 153.

MEDEIROS, M. C. et al. Forecasting inflation in a data-rich environment: The benefits
of machine learning methods. Journal of Business and Economic Statistics, Aug. 2019.
Available at: <https://doi.org/10.1080/07350015.2019.1637745>. Last access: 27 Jun.
2020. Cited 10 times on pages 15, 27, 28, 33, 70, 71, 91, 93, 119, and 120.

MESSINA, R.; LOURADOUR, J. Segmentation-free handwritten Chinese text recognition
with LSTM-RNN. In: INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS
AND RECOGNITION, 13., 2015, Tunis, Tunisia. Proceedings... Tunis: IEEE, 2015. p.
171–175. Cited on page 70.

MONACELLI, T.; SALA, L. The international dimension of inflation: Evidence from
disaggregated consumer price data. Journal of Money, Credit and Banking, v. 41, n. 1, p.
101–120, Jan. 2009. Cited on page 134.

MONACHE, D. D.; PETRELLA, I. Adaptive models and heavy tails with an application
to inflation forecasting. International Journal of Forecasting, v. 33, n. 2, p. 482–501,
Apr./Jun. 2017. Cited 2 times on pages 37 and 104.

MURRAY, N.; PERRONNIN, F. Generalized max pooling. In: IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION, 27., 2014, Columbus, Ohio.
Proceedings... Columbus, Ohio: IEEE, 2014. p. 2473–2480. Cited on page 86.

NIU, Z. et al. Wind power forecasting using attention-based gated recurrent unit network.
Energy, v. 196, n. 1, p. 1–17, Apr. 2020. Cited on page 68.

NTI, K. O.; ADEKOYA, A.; WEYORI, B. Random forest based feature selection of
macroeconomic variables for stock market prediction. American Journal of Applied
Sciences, v. 16, n. 7, p. 200–212, Sep. 2019. Cited on page 50.

O’REILLY, R. C.; FRANK, M. J. Making working memory work: A computational model
of learning in the prefontral cortex and basal ganglia. Neural Computation, v. 18, n. 2, p.
283–328, Feb. 2006. Cited on page 70.

PALANGI, H.; WARD, R.; DENG, L. Distributed compressive sensing: A deep learning
approach. IEEE Transactions on Signal Processing, v. 64, n. 17, p. 4504–4518, Sep. 2016.
Cited on page 67.

PARK, T.; CASELLA, G. The Bayesian Lasso. Journal of the American Statistical
Association, v. 103, n. 482, p. 681–686, Jun. 2008. Cited 3 times on pages 43, 44, and 91.

PERCIVAL, D. B.; WALDEN, A. T. Wavelet Methods for Time Series Analysis. 2. ed.
Cambridge: Cambridge University Press, 2006. Cited on page 132.

https://doi.org/10.1080/07350015.2019.1637745

146 Bibliography

PEREIRA, J.; SILVEIRA, M. Unsupervised anomaly detection in energy time series
data using variational recurrent autoencoders with attention. In: INTERNATIONAL
CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, 17., 2018, Orlando,
FL. Proceedings... Orlando, FL: IEEE, 2018. p. 1–13. Cited on page 74.

PRÜSER, J. Forecasting with many predictors using bayesian additive regression trees.
Journal of Forecasting, v. 38, n. 7, p. 621–631, Mar. 2019. Cited on page 51.

RAMACHANDRAN, P.; ZOPH, B.; LE, V. Searching for activation functions. In:
INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS, 6., 2018,
Vancouver, BC. Proceedings... Vancouver, BC: ICLR, 2018. p. 1–13. Cited on page 132.

RAWAT, W.; WANG, Z. Deep convolutional neural networks for image classification: A
comprehensive review. Neural Networks, v. 29, n. 9, p. 2352–2449, Sep. 2017. Cited on
page 63.

ROUX, N. L.; BENGIO, Y. Deep belief networks are compact universal approximators.
Neural Computation, v. 22, n. 8, p. 2192–2207, Aug. 2010. Cited on page 53.

RUDD, J.; WHELAN, K. Modeling inflation dynamics: A critical review of recent
research. Journal of Money, Credit and Banking, v. 39, n. 1, p. 155–170, Feb. 2007. Cited
on page 27.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature, v. 323, n. 1, p. 533–536, Oct. 1986. Cited on page 65.

SANTURKAR, S. et al. How does batch normalization help optimization? In:
INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING,
32., 2018, New York, United States. Proceedings... New York, United States: Curran
Associates, 2018. p. 2488–2498. Cited on page 85.

SCHÄFER, A. M.; ZIMMERMAN, H. G. Recurrent neural networks are universal
approximators. International Journal of Neural Systems, v. 17, n. 4, p. 253–263, Jun.
2007. Cited on page 66.

SCHALING, E. The nonlinear Phillips Curve and inflation forecast targeting: Symmetric
versus asymmetric monetary policy rules. Journal of Money, Credit and Banking, v. 36,
n. 3, p. 361–386, Jun. 2004. Cited on page 35.

SCHERER, D.; MÜLLER, A. Evaluation of pooling operations in convolutional
architectures for object recognition. In: INTERNATIONAL CONFERENCE ON
ARTIFICIAL NEURAL NETWORKS, 20., 2010, Thessaloniki, Greece. Proceedings...
Thessaloniki, Greece: ICANN, 2010. p. 92–101. Cited on page 86.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural Networks,
v. 61, n. 1, p. 85–117, Jan. 2015. Cited 2 times on pages 53 and 67.

SEZER, O. B.; OZBAYOGLU, A. M. Algorithmic financial trading with deep
convolutional networks: Time series to image conversion approach. Applied Soft Computing,
v. 70, n. 1, p. 525–538, Sep. 2018. Cited 3 times on pages 64, 78, and 82.

SHEN, G. et al. Deep learning with gated recurrent unit networks for financial predictions.
Procedia Computer Science, v. 131, n. 1, p. 895–903, Apr. 2018. Cited 2 times on pages
67 and 68.

Bibliography 147

SHI, X. et al. Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In: INTERNATIONAL CONFERENCE ON NEURAL INFORMATION
PROCESSING SYSTEMS, 28., 2015, Cambridge, MA. Proceedings... Cambridge: NIPS,
2015. p. 802–810. Cited 5 times on pages 29, 73, 77, 78, and 82.

SIBI, P.; JONES, S. A.; SIDDARTH, P. Analysis of different activation functions using
back proparagion neural networks. Journal of Theoretical and Applied Information
Technology, v. 43, n. 3, p. 1264–1268, Jan. 2013. Cited on page 56.

SILVERMAN, B. Density Estimation for Statistics and Data Analysis. 1. ed. London:
Chapman and Hall, 1986. Cited on page 108.

SONG, Y. et al. An efficient instance selection algorithm for k nearest neighbor regression.
Neurocomputing, v. 251, n. 1, p. 26–34, Aug. 2017. Cited on page 51.

SOYDANER, D. A comparison of optimization algorithms for deep learning. International
Journal of Pattern Recognition and Artificial Intelligence, v. 34, n. 13, p. 1264–1268, Apr.
2020. Cited on page 98.

SRIVASTAVA, N. et al. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, v. 15, n. 6, p. 1929–1958, Jun. 2014.
Cited 3 times on pages 18, 83, and 84.

STOCK, J. H.; WATSON, M. W. Forecasting inflation. Journal of Monetary Economics,
v. 44, n. 2, p. 293–335, Oct. 1999. Cited on page 71.

STOCK, J. H.; WATSON, M. W. Why has US inflation become harder to forecast?
Journal of Money, Credit and Banking, v. 39, n. 1, p. 3–33, Feb. 2007. Cited on page 71.

STOCK, J. H.; WATSON, M. W. Dynamic factor models, factor-augmented vector
autoregressions, and structural vector autoregressions in macroeconomics. In: J. B.
TAYLOR AND H. UHLIG. Handbook of Macroecoomics. 1. ed. New York: Elsevier, 2016.
v. 2, p. 415–525. Cited on page 41.

TAKAHASHI, S.; CHEN, Y.; TANAKA-ISHII, K. Modeling financial time-series with
generative adversarial networks. Physica A: Statistical Mechanics and Its Applications,
v. 527, n. 1, p. 1212–1261, Aug. 2019. Cited on page 133.

TANG, Y.; ELIASMITH, C. Deep networks for robust visual recognition. In:
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 27., 2010, Haifa, Israel.
Proceedings... Haifa: NIPS, 2010. p. 21–24. Cited on page 83.

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B, v. 58, n. 1, p. 267–288, Jan. 1996. Cited on page 42.

TIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, v. 1, n. 1, p. 211–244, Jan. 2001. Cited on page 44.

TKÁČ, M.; VERNER, R. Artificial neural networks in business: Two decades of research.
Applied Soft Computing, v. 38, n. 1, p. 788–804, Jan. 2016. Cited on page 29.

TSAY, R. S. Analysis of Financial Time Series. 3. ed. New Jersey: Wiley, 2010. Cited 4
times on pages 37, 38, 39, and 40.

148 Bibliography

ÜLKE, V. et al. A comparison of time series and machine learning models for inflation
forecasting: Empirical evidence from the USA. Neural Computing and Applications, v. 30,
n. 5, p. 1519–1527, Sep. 2018. Cited 2 times on pages 28 and 37.

VASCONCELOS, G. F. R. Forecasting in high-dimension: Inflation and other economic
variables. 169 p. Tese (Doutorado em Engenharia Elétrica) — Pontifícia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 2018. Cited 2 times on pages 48 and 49.

VINCENT, P. et al. Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of Machine Learning Research,
v. 11, n. 1, p. 3371–3408, Dec. 2010. Cited 3 times on pages 59, 60, and 61.

WANG, K.; QI, X.; LIU, H. Photovoltaic power forecasting based LSTM-Convolutional
network. Energy, v. 189, n. 1, p. 1–11, Dec. 2019. Cited 2 times on pages 29 and 73.

WANG, Y.; YAO, H.; ZHAO, S. Auto-encoder based dimensionality reduction.
Neurocomputing, v. 184, n. 1, p. 232–242, Apr. 2016. Cited 4 times on pages 29, 30, 61,
and 62.

YAMASHITA, R. et al. Convolutional neural networks: An overview and application in
radiology. Insights into Imaging, v. 9, n. 1, p. 611–629, Jun. 2018. Cited on page 65.

YU, Y. et al. A review of recurrent neural networks: LSTM cells and network architectures.
Neural Computation, v. 31, n. 7, p. 1235–1270, Jul. 2019. Cited 3 times on pages 68, 87,
and 133.

ZHANG, B.; WU, J.-L.; CHANG, P.-C. A multiple time series-based recurrent neural
network for short-term load forecasting. Soft Computing, v. 22, n. 12, p. 4099–4112, Jun.
2018. Cited on page 66.

ZHANG, L. Modeling the Phillips curve in China: A nonlinear perspective. Macroeconomic
Dynamics, v. 21, n. 2, p. 439–461, Mar. 2017. Cited on page 27.

ZHAO, B. et al. Convolutional neural networks for time series classification. Journal of
Systems Engineering and Electronics, v. 28, n. 1, p. 162–169, Feb. 2017. Cited on page 65.

ZHOU, G. et al. Minimal gated unit for recurrent neural networks. International Journal
of Automation and Computing, v. 13, n. 3, p. 226–234, Jun. 2016. Cited on page 68.

ZHOU, Y.; CHELLAPPA, R. Computation of optical flow using a neural network. In:
INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, 1., 1988, San Diego,
CA. Proceedings... San Diego, CA: IEEE, 1988. p. 71–78. Cited on page 86.

149

APPENDIX A – FULL DESCRIPTION OF THE DATASET

The next tables contain the full details of the dataset employed to fit the model
developed and its benchmarks.

Table 11 – Macroeconomic time series used to fit the model developed for inflation fore-
casting and its benchmarks. “Transf.” refers to the transformation applied to
the data according to the recommendations given by McCracken and Ng (2016),
which are compiled in Table 13.

Group Transf. FRED Code Description
OI 5 RPI Real Personal Income (RPI)
OI 5 W875RX1 RPI ex Transfer Receipts
OI 5 INDPRO Industrial Production (IP) Index
OI 5 IPFPNSS IP - Final Products
OI 5 IPFINAL IP - Final Products (Market Group)
OI 5 IPCONGD IP - Consumer Goods
OI 5 IPDCONGD IP - Durable Goods
OI 5 IPNCONGD IP - Nondurable Consumer Goods
OI 5 IPBUSEQ IP - Business Equipment
OI 5 IPMAT IP - Materials
OI 5 IPDMAT IP - Durable Materials
OI 5 IPNMAT IP - Nondurable Materials
OI 5 IPMANSICS IP - Manufacturing (ISC)
OI 5 IPB51222s IP - Residential Utilities
OI 5 IPFUELS IP - Fuels
OI 1 NAPMPI ISM Manufacturing - Prod. Index
OI 2 CUMFNS Capacity Utilization - Manufacturing
LM 2 HWI Help-Wanted Index for US
LM 2 HWIURATIO Ratio of Help Wanted / No. Unemp.
LM 5 CLF16OV Civilian Labor Force
LM 5 CE16OV Civilian Employment
LM 2 UNRATE Civilian Unemployment Rate
LM 2 UEMPMEAN Avg. Duration of Unemp. (Weeks)
LM 5 UEMPLT5 Civ. Unemp. - Less Than 5 Weeks
LM 5 UEMP5TO14 Civ. Unemp. for 5-14 Weeks
LM 5 UEMP15OV Civ. Unemp. for 15 Weeks and Over
LM 5 UEMP15T26 Civ. Unemp. for 15-26 Weeks
LM 5 UEMP27OV Civ. Unemp. for 27 Weeks and Over
LM 5 CLAIMSx Initial Claims
LM 5 PAYEMS All Emp.: Total nonfarm

150 APPENDIX A. Full Description of the Dataset

Table 11 – Macroeconomic time series used to fit the model developed for inflation fore-
casting and its benchmarks. “Transf.” refers to the transformation applied to
the data according to the recommendations given by McCracken and Ng (2016),
which are compiled in Table 13.

Group Transf. FRED Code Description
LM 5 USGOOD All Emp.: Goods-Producing Industries
LM 5 CES1021000001 All Emp.: Mining and Logging: Mining
LM 5 USCONS All Emp.: Construction
LM 5 MANEMP All Emp.: Manufacturing
LM 5 DMANEMP All Emp.: Durable goods
LM 5 NDMANEMP All Emp.: Nondurable goods
LM 5 SRVPRD All Emp.: Service-Providing Ind.
LM 5 USTPU All Emp.: Trade, Transp. and Utilities
LM 5 USWTRADE All Emp.: Wholesale Trade
LM 5 USTRADE All Emp.: Retail Trade
LM 5 USFIRE All Emp.: Financial Activities
LM 5 USGOVT All Emp.: Government
LM 1 CES0600000007 Avg Weekly Hours: Goods-Producing
LM 2 AWOTMAN Avg Weekly Overtime Hours: Manuf.
LM 1 AWHMAN Avg Weekly Hours: Manufacturing
LM 1 NAPMEI ISM Manuf.: Employment Index
LM 6 CES0600000008 Avg Hourly Earn.: Goods-Producing
LM 6 CES2000000008 Avg Hourly Earnings: Construction
LM 6 CES3000000008 Avg Hourly Earnings: Manufacturing
H 4 HOUST Housing Starts: New Priv. Owned
H 4 HOUSTNE Housing Starts, Northeast
H 4 HOUSTMW Housing Starts, Midwest
H 4 HOUSTS Housing Starts, South
H 4 HOUSTW Housing Starts, West
H 4 PERMIT New Private Housing Permits (SAAR)
H 4 PERMITNE New Priv. Housing Perm., NE (SAAR)
H 4 PERMITMW New Priv. Housing Perm., MW (SAAR)
H 4 PERMITS New Priv. Housing Perm., S (SAAR)
H 4 PERMITW New Priv. Housing Perm., W (SAAR)
COI 5 DPCERA3M086SBEA Real personal cons. expenditures
COI 5 CMRMTSPLx Real Manufacturing and Trade Ind.
COI 5 RETAILx Retail and Food Services Sales
COI 1 NAPM ISM : PMI Composite Index
COI 1 NAPMNOI ISM : New Orders Index

151

Table 11 – Macroeconomic time series used to fit the model developed for inflation fore-
casting and its benchmarks. “Transf.” refers to the transformation applied to
the data according to the recommendations given by McCracken and Ng (2016),
which are compiled in Table 13.

Group Transf. FRED Code Description
COI 1 NAPMSDI ISM : Supplier Deliveries Index
COI 1 NAPMII ISM : Inventories Index
COI 5 AMDMNOx New Orders for Durable Goods
COI 5 ANDENOx New Orders for Nondefense Capital
COI 5 AMDMUOx Unfilled Orders for Durable Goods
COI 5 BUSINVx Total Business Inventories
COI 2 ISRATIOx Total Business: Inventories to Sales
COI 2 UMCSENTx Consumer Sentiment Index
MC 6 M1SL M1 Money Stock
MC 6 M2SL M2 Money Stock
MC 5 M2REAL Real M2 Money Stock
MC 6 AMBSL St. Louis Adjusted Monetary Base
MC 6 TOTRESNS Total Reserves of Depository Inst.
MC 7 NONBORRES Reserves Of Depository Institutions
MC 6 BUSLOANS Commercial and Industrial Loans
MC 6 REALLN Real Estate Loans at All Commercial
MC 6 NONREVSL Total Nonrevolving Credit
MC 2 CONSPI Nonrevolving Cons. Credit to Pers. Inc.
MC 6 MZMSL MZM Money Stock
MC 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Out.
MC 6 DTCTHFNM Total Consumer Loans and Leases Out.
MC 6 INVEST Securities in Bank Credit at All
INTFX 2 FEDFUNDS Effective Federal Funds Rate
INTFX 2 CP3Mx 3-Month AA Fin. Comm. Paper Rate
INTFX 2 TB3MS 3-Month Treasury Bill:
INTFX 2 TB6MS 6-Month Treasury Bill:
INTFX 2 GS1 1-Year Treasury Rate
INTFX 2 GS5 5-Year Treasury Rate
INTFX 2 GS10 10-Year Treasury Rate
INTFX 2 AAA Moody’s Seas. Aaa Corp. Bond Yield
INTFX 2 BAA Moody’s Seas. Baa Corp. Bond Yield
INTFX 1 COMPAPFFx 3M Comm. Paper Minus FEDFUNDS
INTFX 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
INTFX 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS

152 APPENDIX A. Full Description of the Dataset

Table 11 – Macroeconomic time series used to fit the model developed for inflation fore-
casting and its benchmarks. “Transf.” refers to the transformation applied to
the data according to the recommendations given by McCracken and Ng (2016),
which are compiled in Table 13.

Group Transf. FRED Code Description
INTFX 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS
INTFX 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS
INTFX 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS
INTFX 1 AAAFFM Moody’s Aaa Corp. Minus FEDFUNDS
INTFX 1 BAAFFM Moody’s Baa Corp. Minus FEDFUNDS
INTFX 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index
INTFX 5 EXSZUSx Switzerland / U.S. Foreign Exch. Rate
INTFX 5 EXJPUSx Japan / U.S. Foreign Exchange Rate
INTFX 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate
INTFX 5 EXCAUSx Canada / U.S. Foreign Exchange Rate
P 6 PPIFGS PPI: Finished Goods
P 6 PPIFCG PPI: Finished Consumer Goods
P 6 PPIITM PPI: Intermediate Materials
P 6 PPICRM PPI: Crude Materials
P 6 OILPRICEx Crude Oil spliced WTI and Cushing
P 6 PPICMM PPI: Metals: nonferrous
P 1 NAPMPRI ISM Manufacturing: Prices Index
P 6 CPIAUCSL CPI : All Items
P 6 CPIAPPSL CPI : Apparel
P 6 CPITRNSL CPI : Transportation
P 6 CPIMEDSL CPI : Medical Care
P 6 CUSR0000SAC CPI : Commodities
P 6 CUUR0000SAD CPI : Durables
P 6 CUSR0000SAS CPI : Services
P 6 CPIULFSL CPI : All Items Less Food
P 6 CUUR0000SA0L2 CPI : All items less shelter
P 6 CUSR0000SA0L5 CPI : All items less medical care
P 6 PCEPI Personal Cons. Expend.: Chain Index
P 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods
P 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
P 6 DSERRG3M086SBEA Personal Cons. Exp: Services
SM 5 S&P 500 S&P’s Price Index: Composite
SM 5 S&P: indust S&P’s Price Index: Industrials
SM 2 S&P div yield Dividend yield S&P’s 500

153

Table 11 – Macroeconomic time series used to fit the model developed for inflation fore-
casting and its benchmarks. “Transf.” refers to the transformation applied to
the data according to the recommendations given by McCracken and Ng (2016),
which are compiled in Table 13.

Group Transf. FRED Code Description
SM 5 S&P PE ratio S&P’s 500 Price-to-Earnings
SM 1 VXOCLSx S&P 100 Volatility Index

Table 12 – Description of the groups cited in Table 11.

Group Description
OI Output and Income
LM Labor Market
H Housing
COI Consumption, Orders and Inventories
MC Money and Credit
INTFX Interest and Exchange Rates
P Prices
SM Stock Market

Table 13 – Description of the transformations cited in Table 11 applied to each series xt.
The differencing operator is denoted by ∆.

Transformation Description
1 No transformation
2 ∆xt
3 ∆2xt

4 ln xt
5 ∆ ln xt
6 ∆2 ln xt
7 ∆(xt/xt−1 − 1)

	Title page
	Approval
	Dedication
	Agradecimentos
	Epigraph
	Abstract
	Resumo
	Executive Summary
	List of Figures
	List of Tables
	Contents
	Introduction
	Literature Review
	Inflation Forecasting
	New Keynesian Phillips Curve (NKPC)
	Sources of Nonlinearities in Inflation Dynamics

	Conventional Econometric Models
	ARFIMA
	GARCH
	VAR and Cointegration
	Regime-Switching Models
	Markov Chain Models
	Threshold Autoregressive Models

	Factor Models

	Shrinkage Methods
	LASSO Regression
	Ridge Regression
	Elastic Net

	Ensemble Models
	Gradient Boosting and AdaBoost
	Bagging

	Machine Learning Models
	Random Forests
	Bayesian Regression Trees
	K-Nearest Neighbors
	Support Vector Regression

	Deep Learning
	Artificial Neural Networks
	Deep Multilayer Perceptron
	Deep Autoencoder
	Convolutional Neural Networks
	Recurring Neural Networks
	Long Short-Term Memory (LSTM) Networks

	Machine Learning and Inflation Forecasting

	A Deep Learning Model for Inflation Forecasting
	Theoretical Background
	Variational Autoencoders
	Convolutional LSTM Networks

	Computational Implementation

	Data and Methodology
	Benchmarks for Performance Appraisal
	Data
	Training, Validation, and Test Sets
	Programming Languages
	Training and Optimization of Neural Networks

	Results
	Stylized Facts in Inflation Time Series
	Performance Metrics
	Confidence Intervals and Hypothesis Testing
	Empirical Analysis and Discussion

	Conclusions
	Bibliography
	Full Description of the Dataset

